

5 REASONS
to buy your textbooks

and course materials at

SAVINGS:
Prices up to 75% off, daily coupons, and free shipping on orders over $25

CHOICE:
Multiple format options including textbook, eBook and eChapter rentals

CONVENIENCE:
Anytime, anywhere access of eBooks or eChapters via mobile devices

SERVICE:
Free eBook access while your text ships, and instant access to online homework products

STUDY TOOLS:
Study tools* for your text, plus writing, research, career and job search resources
*availability varies

1

2

3

4

5

Find your course materials and start saving at:
www.cengagebrain.com

Engaged with you.
www.cengage.com

Source Code: 14M-AA0107

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ORAC L E ® 1 2 c : S Q L

Joan Casteel

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ORACLE® 12c: SQL
Joan Casteel

Vice President, General Manager, Science,
Math & Quantitative Business: Balraj Kalsi

Product Director: Joe Sabatino

Product Manager: Jason Guyler

Content Developer: Lori Bradshaw, S4 Carlisle

Senior Product Assistant: Brad Sullender

Senior Marketing Manager: Eric La Scola

Marketing Coordinator: William Guiliani

Art and Cover Direction, Production
Management, and Composition:
Lumina Datamatics, Inc.

Intellectual Property

Analyst: Christina Ciaramella

Project Manager: Kathryn Kucharek

Manufacturing Planner: Ron Montgomery

Cover Image: © Chris Clor/Blend Images/Corbis

© 2016, 2010 Cengage Learning

WCN: 02- -

ALL RIGHTS RESERVED. No part of this work covered by the
copyright herein may be reproduced, transmitted, stored, or used in any
form or by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Oracle is a registered trademark, and Oracle 12c, SQL Developer, and
SQL*Plus are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates.

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or
registered trademarks of their respective manufacturers and sellers.

Information pertaining to Northwest Airlines was used with their express
permission. No part of it may be reproduced or used in any form without
prior written permission from Cengage Learning.

Library of Congress Control Number: 2015942548

ISBN: 978-1-305-25103-8

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com

Printed in the United States of America
Print Number: 01 Print Year: 2015

200 203

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To Scott, a true teacher—one who never stops learning

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

BRIEF CONTENTS

Preface xiv

Chapter 1 Overview of Database Concepts 1

Chapter 2 Basic SQL SELECT Statements 25

Chapter 3 Table Creation and Management 57

Chapter 4 Constraints 103

Chapter 5 Data Manipulation and Transaction Control 141

Chapter 6 Additional Database Objects 181

Chapter 7 User Creation and Management 225

Chapter 8 Restricting Rows and Sorting Data 255

Chapter 9 Joining Data from Multiple Tables 295

Chapter 10 Selected Single-Row Functions 347

Chapter 11 Group Functions 401

Chapter 12 Subqueries and MERGE Statements 449

Chapter 13 Views 495

Appendix A Tables for the JustLee Books Database 539

Appendix B SQL*Plus and SQL Developer Overview 547

Appendix C Oracle Resources 555

Appendix D SQL*Loader 557

Appendix E SQL Tuning Topics 561

Appendix F SQL in Various Databases 579

Glossary 583

Index 589

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE OF CONTENTS

xiv

1
2
2
3
4
5
6

10
12
13
13
14
16
16
17
17
18
21
22
22

25
26
27
30
31
33
34
36
36
39
40
Preface

Chapter 1 Overview of Database Concepts
Introduction
Database Terminology
Database Management System
Database Design

Entity-Relationship (E-R) Model
Database Normalization
Relating Tables in the Database

Structured Query Language (SQL)
Databases Used in This Textbook

Basic Assumptions
Tables in the JustLee Books Database

Topic Sequence
Software Used in This Textbook
Chapter Summary
Review Questions
Multiple Choice
Hands-On Assignments
Advanced Challenge
Case Study: City Jail

Chapter 2 Basic SQL SELECT Statements
Introduction
Creating the JustLee Books Database
SELECT Statement Syntax

Selecting All Data in a Table
Selecting One Column from a Table
Selecting Multiple Columns from a Table

Operations in the SELECT Statement
Using Column Aliases
Using Arithmetic Operations
NULL Values

Usin
Usin

Chapte
Chapte

Copyright 2016 Cengage L
Editorial review has deemed th
g DISTINCT and UNIQUE 42
g Concatenation 44
r Summary 49
r 2 Syntax Summary 49

earning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
at any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions 50
Multiple Choice 51
Hands-On Assignments 54
Advanced Challenge 55
Case Study: City Jail 55

Chapter 3 Table Creation and Management 57
Introduction 58
Table Design 59
Table Creation 63

Defining Columns 63
Viewing a List of Tables: USER_TABLES 65
Viewing Table Structures: DESCRIBE 66

Table Creation with Subqueries 70
CREATE TABLE … AS Command 70

Modifying Existing Tables 72
ALTER TABLE … ADD Command 73
ALTER TABLE … MODIFY Command 74
ALTER TABLE … DROP COLUMN Command 79
ALTER TABLE … SET UNUSED/DROP UNUSED COLUMNS Command 80
Renaming a Table 83
Truncating a Table 85

Deleting a Table 86
Chapter Summary 91
Chapter 3 Syntax Summary 92
Review Questions 93
Multiple Choice 94
Hands-On Assignments 97
Advanced Challenge 97
Case Study: City Jail 98

Chapter 4 Constraints 103
Introduction 104
Creating Constraints 105

Creating Constraints at the Column Level 106
Creating Constraints at the Table Level 106

Using the PRIMARY KEY Constraint 107
Using the FOREIGN KEY Constraint 110
Using the UNIQUE Constraint 115
Using the CHECK Constraint 116
Using the NOT NULL Constraint 119
Including Constraints During Table Creation 121
Adding Multiple Constraints on a Single Column 125
Viewing Constraint Information 126

vi Table of Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Disabling and Dropping Constraints 128
Using DISABLE/ENABLE 128
Dropping Constraints 129

Chapter Summary 131
Chapter 4 Syntax Summary 131
Review Questions 133
Multiple Choice 134
Hands-On Assignments 137
Advanced Challenge 139
Case Study: City Jail 139

Chapter 5 Data Manipulation and Transaction Control 141
Introduction 142
Inserting New Rows 143

Using the INSERT Command 143
Handling Virtual Columns 150
Handling Single Quotes in an INSERT Value 152
Inserting Data from an Existing Table 154

Modifying Existing Rows 156
Using the UPDATE Command 156
Using Substitution Variables 158

Deleting Rows 162
Using Transaction Control Statements 163

COMMIT and ROLLBACK Commands 164
SAVEPOINT Command 165

Using Table Locks 168
LOCK TABLE Command 168
SELECT … FOR UPDATE Command 169

Chapter Summary 171
Chapter 5 Syntax Summary 172
Review Questions 173
Multiple Choice 173
Hands-On Assignments 176
Advanced Challenge 177
Case Study: City Jail 178

Chapter 6 Additional Database Objects 181
Introduction 182
Sequences 183

Creating a Sequence 184
Using Sequence Values 189
Setting and Altering Sequence Definitions 192
Altering Sequence Definitions 194
Removing a Sequence 196
Use Identity Columns Instead of Sequences for Primary Key Columns 197

Table of Contents vii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Indexes 199
B-Tree Indexes 200
Bitmap Indexes 206
Function-Based Indexes 208
Index Organized Tables 209
Verifying an Index 210
Altering or Removing an Index 211

Synonyms 212
Deleting a Synonym 215

Chapter Summary 216
Chapter 6 Syntax Summary 217
Review Questions 218
Multiple Choice 219
Hands-On Assignments 222
Advanced Challenge 223
Case Study: City Jail 224

Chapter 7 User Creation and Management 225
Introduction 226
Data Security 227
Creating a User 228

Creating Usernames and Passwords 228
Assigning User Privileges 230

System Privileges 230
Granting System Privileges 231
Object Privileges 232
Granting Object Privileges 232

Managing Passwords 236
Using Roles 237

Creating and Assigning Roles 238
Using Predefined Roles 240
Using Default Roles 241
Enabling Roles After Login 242

Viewing Privilege Information 242
Removing Privileges and Users 244

Revoking Privileges and Roles 244
Dropping a Role 246
Dropping a User 246

Chapter Summary 247
Chapter 7 Syntax Summary 247
Review Questions 249
Multiple Choice 249
Hands-On Assignments 253
Advanced Challenge 253
Case Study: City Jail 254

viii Table of Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Restricting Rows and Sorting Data 255
Introduction 256
Where Clause Syntax 257

Rules for Character Strings 258
Rules for Dates 260

Comparison Operators 260
BETWEEN ... AND Operator 267
IN Operator 268
LIKE Operator 270

Logical Operators 274
Treatment of Null Values 277
ORDER by Clause Syntax 279

Secondary Sort 282
Sorting by SELECT Order 284

Chapter Summary 285
Chapter 8 Syntax Summary 286
Review Questions 288
Multiple Choice 288
Hands-On Assignments 292
Advanced Challenge 293
Case Study: City Jail 293

Chapter 9 Joining Data from Multiple Tables 295
Introduction 296
Cartesian Joins 297

Cartesian Join: Traditional Method 298
Cartesian Join: JOIN Method 300

Equality Joins 301
Equality Joins: Traditional Method 303
Equality Joins: JOIN Method 308

Non-Equality Joins 314
Non-Equality Joins: Traditional Method 315
Non-Equality Joins: JOIN Method 316

Self-Joins 317
Self-Joins: Traditional Method 318
Self-Joins: JOIN Method 319

Outer Joins 320
Outer Joins: Traditional Method 321
Outer Joins: JOIN Method 324

Set Operators 326
Chapter Summary 334
Chapter 9 Syntax Summary 335
Review Questions 337
Multiple Choice 338
Hands-On Assignments 344

Table of Contents ix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Advanced Challenge 345
Case Study: City Jail 345

Chapter 10 Selected Single-Row Functions 347
Introduction 348
Case Conversion Functions 349

The LOWER Function 349
The UPPER Function 350
The INITCAP Function 351

Character Manipulation Functions 352
The SUBSTR Function 352
The INSTR Function 354
The LENGTH Function 356
The LPAD and RPAD Functions 357
The LTRIM and RTRIM Functions 358
The REPLACE Function 359
The TRANSLATE Function 360
The CONCAT Function 360

Number Functions 361
The ROUND Function 361
The TRUNC Function 362
The MOD Function 363
The ABS Function 364
The POWER Function 365

Date Functions 365
The MONTHS_BETWEEN Function 367
The ADD_MONTHS Function 367
The NEXT_DAY and LAST_DAY Functions 368
The TO_DATE Function 369
Rounding Date Values 371
Truncating Date Values 372
CURRENT_DATE Versus SYSDATE 373

Regular Expressions 374
Other Functions 377

The NVL Function 377
The NVL2 Function 380
The NULLIF Function 381
The TO_CHAR Function 383
The DECODE Function 385
The CASE Expression 387
The SOUNDEX Function 387
The TO_NUMBER Function 388

The DUAL Table 389
Chapter Summary 390
Chapter 10 Syntax Summary 390
Review Questions 394

x Table of Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multiple Choice 395
Hands-On Assignments 399
Advanced Challenge 399
Case Study: City Jail 400

Chapter 11 Group Functions 401
Introduction 402
Group Functions 403

The SUM Function 404
The AVG Function 406
The COUNT Function 408
The MAX Function 411
The MIN Function 412

Grouping Data 413
Restricting Aggregated Output 417
Nesting Functions 421
Statistical Group Functions 422

The STDDEV Function 422
The VARIANCE Function 423

Enhanced Aggregation for Reporting 424
The GROUPING SETS Expression 427
The CUBE Extension 428
The ROLLUP Extension 431
Pattern Matching 437

Chapter Summary 439
Chapter 11 Syntax Summary 439
Review Questions 441
Multiple Choice 442
Hands-On Assignments 446
Advanced Challenge 447
Case Study: City Jail 447

Chapter 12 Subqueries and MERGE Statements 449
Introduction 450
Subqueries and Their Uses 451
Single-Row Subqueries 451

Single-Row Subquery in a WHERE Clause 451
Single-Row Subquery in a HAVING Clause 456
Single-Row Subquery in a SELECT Clause 457

Multiple-Row Subqueries 459
The IN Operator 460
The ALL and ANY Operators 461
Multiple-Row Subquery in a HAVING Clause 465

Multiple-Column Subqueries 467
Multiple-Column Subquery in a FROM Clause 467
Multiple-Column Subquery in a WHERE Clause 469

Table of Contents xi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

NULL Values 471
NVL in Subqueries 471
IS NULL in Subqueries 472

Correlated Subqueries 473
Nested Subqueries 475
Subquery Factoring Clause 477
DML Actions Using Subqueries 478
MERGE Statements 479
Chapter Summary 484
Chapter 12 Syntax Summary 484
Review Questions 486
Multiple Choice 486
Hands-On Assignments 492
Advanced Challenge 493
Case Study: City Jail 493

Chapter 13 Views 495
Introduction 496
Creating a View 498

Creating a Simple View 500
DML Operations on a Simple View 504

Creating a Complex View 508
DML Operations on a Complex View with an Arithmetic Expression 508
DML Operations on a Complex View Containing Data from Multiple Tables 513
DML Operations on a Complex View Containing Functions or Grouped Data 515
DML Operations on a Complex View Containing DISTINCT or ROWNUM 517
Summary Guidelines for DML Operations on a Complex View 519

Dropping a View 519
Creating an Inline View 520

CROSS and OUTER APPLY Methods for Joins 520
TOP-N Analysis 522

Creating a Materialized View 527
Chapter Summary 531
Chapter 13 Syntax Summary 532
Review Questions 533
Multiple Choice 533
Hands-On Assignments 537
Advanced Challenge 538
Case Study: City Jail 538

Appendix A Tables for the JustLee Books Database 539
CUSTOMERS Table 539
BOOKS Table 540
ORDERS Table 541
ORDERITEMS Table 542
AUTHOR Table 543
BOOKAUTHOR Table 544

xii Table of Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PUBLISHER Table 545
PROMOTION Table 546

Appendix B SQL*Plus and SQL Developer Overview 547
Introduction 547
SQL*Plus 547
SQL Developer 551

Appendix C Oracle Resources 555
Oracle Academic Initiative (OAI) 555
Oracle Certification Program (OCP) 555
Oracle Technology Network (OTN) 555
International Oracle Users Group (IOUG) 556

Appendix D SQL*Loader 557
Introduction 557
Read a Fixed File Format 557
Read a Delimited File 559

Appendix E SQL Tuning Topics 561
Introduction 561
Tuning Concepts and Issues 561

Identifying Problem Areas in Coding 561
Processing and the Optimizer 563
The Explain Plan 565
Timing Feature 570
Selected SQL Tuning Guidelines and Examples 571
Avoiding Unnecessary Column Selection 572
Index Suppression 573
Concatenated Indexes 575
Subqueries 576
Optimizer Hints 577

Appendix F SQL in Various Databases 579
Introduction 579

Suppressing Duplicates 579
Locating a Value in a String 580
Displaying the Current Date 580
Specifying a Default Date Format 580
Replacing NULL Values in Text Data 581
Adding Time to Dates 581
Extracting Values from a String 581
Concatenating 582
Data Structures 582

Glossary 583
Index 589

Table of Contents xiii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PREFACE

The past few decades have seen a proliferation of organizations that rely heavily on
information technology. These organizations store their data in databases, and many
choose Oracle database management systems to access their data. The current Oracle
database version, Oracle 12c, is a database management system that enables users to
create, manipulate, and retrieve data. The purpose of this textbook is to introduce
students to basic SQL commands for interacting with Oracle 12c databases in a business
environment. In addition, concepts relating to objectives of the current Oracle
certification exams have been incorporated for students wanting to pursue certification.

The Intended Audience
This textbook has been designed for students in technical two-year or four-year programs
who need to learn how to interact with databases. Although having an understanding of
database design is preferable, an introductory chapter has been included to review the
basic concepts of E-R modeling and the normalization process.

Oracle Certification Program (OCP)
This textbook covers the objectives of SQL Fundamentals Exams available: 1Z0-051 for
Oracle 11g and Exam 1Z0-061 for Oracle Database 12c. Most objectives for Exam 1Z0-
047, Oracle Database SQL Expert, are also covered. Any of these exams serve as the first
exam in the Oracle Application Development and Oracle Database Administrator Oracle
Certified Associate level certification tracks. Information about registering for these
exams, along with other reference material, is available at www.oracle.com.

The Approach
The concepts introduced in this textbook are discussed in the context of a hypothetical
real-world business: an online book retailer named JustLee Books. The company’s
business operation and the database structure are introduced and analyzed, and as
commands are introduced throughout the textbook, they’re modeled with examples using
the JustLee Books database. Using consistent examples of a hypothetical company helps
you learn the syntax of commands and how to use them in a real-world environment. In
addition, a script file that generates the database is available to give you hands-on practice
in re-creating examples and practicing variations of SQL commands to enhance your
understanding.

To explain what a database is and how it’s created, this textbook initially focuses
on creating tables and learning how to perform data manipulation operations. After
you’re familiar with the database structure, the focus then turns to querying a database.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Chapters 8 through 13, you learn how to retrieve data from the database, using the
many options of a SELECT statement, including row filtering, joins, functions, and
subqueries.

To reinforce the material, each chapter includes a chapter summary and, when
appropriate, a syntax guide for the commands covered in the chapter. In addition, each
chapter includes review questions and hands-on activities that test your knowledge and
challenge you to apply that knowledge to solving business problems. A running case study
that builds throughout the textbook provides a second real-world setting—a city jail
system—as another opportunity to work with databases.

New to This Edition
Topics added covering new Oracle 12c features include:

• Extended data types
• Invisible columns
• Default column values

• Specifying a value for NULL inserts
• Based on a sequence value

• Identity columns
• Left outer join enhancements
• CROSS APPLY join method
• Pattern matching for trend analyses
• Enhanced Top-N-Query features

In addition, coverage of subquery factoring or use of the WITH clause has been added
to Chapter 12.

Overview of This Book
The examples, assignments, and cases in this book help you achieve the following
objectives:

• Issue SQL commands that retrieve data based on criteria specified by
the user.

• Use SQL commands to join tables and retrieve data from joined tables.
• Perform calculations based on data stored in the database.
• Use functions to manipulate and aggregate data.
• Use subqueries to retrieve data based on unknown conditions.
• Create, modify, and drop database tables.
• Manipulate data stored in database tables.
• Enforce business rules by using table constraints.
• Create users and assign the privileges users need to perform tasks.

The chapters’ contents build in complexity while reinforcing previous ideas. Chapter 1
introduces basic database management concepts, including database design. Chapter 2
shows how to retrieve data from a table. Chapter 3 explains how to create new database
tables. Chapter 4 addresses the use of constraints to enforce business rules and ensure the
integrity of table data. Chapter 5 explains adding data to a table, modifying existing data,
and deleting data. Chapter 6 shows how to use a sequence to generate numbers, create

Preface xv

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

indexes to speed up data retrieval, and create synonyms to provide aliases for tables.
Chapter 7 steps you through creating user accounts and roles and shows how to grant (and
revoke) privileges to these accounts and roles. Chapter 8 explains how to restrict rows
retrieved from a table, based on a given condition. Chapter 9 shows how to link tables with
common columns by using joins. Chapter 10 describes the single-row functions supported
by Oracle 12c. Chapter 11 covers the usage of multiple-row functions to derive a single
value for a group of rows and explains how to restrict groups of rows. Chapter 12 covers
using subqueries to retrieve rows based on an unknown condition already stored in the
database. Chapter 13 explains using views to restrict access to data and reduce the
complexity of certain types of queries.

The appendixes support and reinforce chapter materials. Appendix A contains
printed versions of the initial table structure and data for the JustLee Books database used
throughout this textbook. Appendix B introduces the operation of the SQL*Plus and SQL
Developer client software tools. Appendix C lists Oracle resources for further study.
Appendix D introduces the SQL*Loader utility for importing data. Appendix E introduces
basic SQL statement tuning concepts. Appendix F identifies SQL differences in some
popular databases.

Features
To enhance your learning experience, each chapter in this textbook includes the following
elements:

• Chapter objectives: Each chapter begins with a list of the concepts to be
mastered by the chapter’s conclusion. This list gives you a quick overview of
chapter contents and serves as a useful study aid.

• Running case: A sustained example, the business operation of JustLee Books,
is the basis for introducing new commands and practicing the material
covered in each chapter.

• Methodology: As new commands are introduced in each chapter, the
command syntax is shown and then an example, using the JustLee Books
database, illustrates using the command in the context of business
operations. This methodology shows you not only how the command is used,
but also when and why it’s used. The script file used to create the database is
available so that you can work through the examples in this textbook,
engendering a hands-on environment in which you can reinforce your
knowledge of chapter material.

• Tip: This feature, designated by the Tip icon, provides practical advice and
sometimes explains how a concept applies in the workplace.

• Note: These explanations, designated by the Note icon, offer more
information on performing operations with databases.

• Database Preparation: These notes, placed at the end-of-chapter
introductions, tell you which script from the student data files you should
run in preparation for chapter examples and activities.

• Caution: This warning, designated by the Caution icon, points out database
operations that, if misused, could have devastating results.

• Chapter summaries: Each chapter’s text is followed by a summary of chapter
concepts. These summaries are a helpful recap of chapter contents.

xvi Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• Syntax summaries: Beginning with Chapter 2, a Syntax Guide table is
included after each chapter summary to recap the command syntax covered
in the chapter.

• Review questions: End-of-chapter assessment begins with review questions
that reinforce the main ideas introduced in each chapter. These questions
ensure that you have mastered the concepts and understand the information
covered in the chapter.

• Multiple-choice questions: Each chapter contains multiple-choice
questions covering the material in the chapter. Oracle certification-type
questions are included to prepare you for the type of questions you
can expect on certification exams and measure your level of
understanding.

• Hands-on assignments: Along with conceptual explanations and
examples, each chapter includes hands-on assignments related to the
chapter’s contents. The purpose of these assignments is to give you
practical experience. In most cases, the assignments are based on the
JustLee Books database and build on the examples in the chapter.

• Advanced challenge: This section poses another problem about the JustLee
Books database for you to solve and is larger in scope than the hands-on
assignments.

• Case studies: At the end of each chapter is a major case study, designed
to help you apply what you have learned to real-world situations. These
cases give you the opportunity to synthesize and evaluate information
independently, examine potential solutions, and make recommendations,
much as you would in an actual business situation. These cases uses a
database based on a city jail system.

Supplemental Materials
The following supplemental materials are available when this book is used in a classroom
setting. All teaching tools available with this book are provided to instructors on the
Cengage Learning Web site at www.cengagebrain.com.

• Electronic Instructor’s Manual: The Instructor’s Manual accompanying this
textbook includes the following items:
• Additional instructional material to assist in class preparation, including

suggestions for lecture topics
• A sample syllabus
• When applicable, information about potential problems that can occur in

networked environments
• Cengage Learning Testing Powered by Cognero is a flexible, online system

that allows you to:
• author, edit, and manage test bank content from multiple Cengage

Learning solutions
• create multiple test versions in an instant
• deliver tests from your LMS, your classroom or wherever you want

Preface xvii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• PowerPoint presentations: Microsoft® PowerPoint slides are included for
each chapter. Instructors can use the slides in three ways: as teaching
aids during classroom presentations, as printed handouts for classroom
distribution, or as network-accessible resources for chapter review.
Instructors can add their own slides for additional topics introduced to
the class.

• Data files: The script files needed to create the JustLee Books and City
Jail databases are available on the Cengage Learning Web site at www
.cengagebrain.com.

• Solution files: Solutions to chapter examples, end-of-chapter review
questions and multiple-choice questions, hands-on assignments, and case
studies are available on the Cengage Learning Web site at www
.cengagebrain.com. The solutions are password protected.

• Figure files: Figure files allow instructors to create their own presentations
with figures from the textbook.

Acknowledgments
I feel fortunate that Cengage Learning pursued my authorship of this textbook and
continues to support my efforts. I am one lucky person—I have two angels in heaven, my
mother and grandmother, and one angel here on earth, Scott. Without them watching
over me, I would not be able to tackle such challenges. I also want to thank my father,
who always seems more excited than me every time I finish a book project.

However, this textbook is the result of an incredible effort by many people whom
I wish I had the opportunity to thank personally. First, hats off to Lori Bradshaw and
Wendy Langerud of S4Carlisle Publishing Services for managing the content for this
project and keeping everyone on schedule. And a special thank you to Arul Joseph Raj
of Lumina Datamatics LTD for his detailed efforts in preparing, reviewing, and formatting
the content. There were many others involved in this project like product management,
editing, marketing, and art development, and every effort was critical in making this
book a reality. I truly appreciate all of these efforts.

In addition, I need to recognize the enormous contribution of colleagues and
reviewers, who provided helpful suggestions and insight into the development of this
textbook in earlier editions. And, finally, many thanks to the instructors who have
adopted this text and have dedicated their efforts to assist others to learn these most
important database skills.

xviii Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

READ THIS BEFORE YOU BEGIN

T O T H E U S E R

Data Files
To work through the examples and complete the projects in this book, you need to load
the data files created for this book. Your instructor will provide these data files, or you
can download them from the Cengage Learning Web site at www.cengagebrain.com and
then search for this book’s title. The data files are designed to supply the same data shown
in chapter examples, so you can have hands-on practice in re-creating the queries and
their output. The tables in the database can be reset if you encounter problems, such as
accidentally deleting data. Working through all examples is highly recommended to
reinforce your learning.

Starting with Chapter 2, database script instructions are given at the beginning of the
chapter, if applicable. These database script files are in the folder corresponding to the
chapter (Chapter 5, Chapter 10, and so forth) on www.cengagebrain.com and have
filenames such as JLDB_Build_#.sql (substituting the chapter number for the
symbol). If the computer in your school lab—or your own computer—has Oracle 12c
installed, you can work through the chapter examples and complete the hands-on
assignments and case projects. Many of the coding examples in this textbook can be
completed successfully with previous versions of Oracle (Oracle 10g or Oracle 11g).

Connecting to Oracle
Most colleges will provide various options for accessing Oracle software to execute SQL
statements required in this text, typically via the internet and/or using college computer
labs. Contact your instructor first to identify the options available. If you choose to install
Oracle 12c on your own computer, visit www.oracle.com and go to the database
download area. The database software is freely available for learning purposes, however, it
is very important that you view the documentation for the software prior to downloading
and installing the software. Be sure to review the hardware and software requirements
prior to attempting the install. You will be asked to setup a free Oracle Technology
Network account before downloading. If you are new to Oracle, consult with your
instructor prior to installing Oracle database software for guidance. This text was tested
on Oracle Database 12c release 12.1.0.1.0.

When you install the Oracle software, you’re prompted to change the password for
certain default administrative user accounts. Make sure you record the accounts’ names
and passwords because you might need to log in to the database with one of these
administrative accounts in later chapters. After you install Oracle, you’re required to

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

enter a username and password to access the software. One default username created
during installation is “scott.”

Also, note that you can’t use your own computer to work through chapter examples
and complete projects unless you have the data files. You can get these files from your
instructor, or you can download them from the Cengage Learning Web site at www
.cengagebrain.com and then search for this book’s title. When you download the data
files, they should be stored in a directory separate from any other files on your hard drive.
You need to remember the path or folder containing these files because each script
filename must be prefixed with its location before you run the script.

Visit Our Web Site
A supplemental chapter on formatting report output has been included in the book’s
online materials. Additional materials designed especially for this textbook might be
available on the Cengage Learning Web site. Go to www.cengagebrain.com periodically
and search this site for more details.

T O I N S T R U C T O R S

To complete examples and activities in this textbook, your students must have access to
the data files included on the Instructor Resources GD (or downloaded from www
.cengagebrain.com).

The data files consist of the JustLee Database folder and a folder for each chapter.
Many chapters require running a script; if so, these instructions are given in a note at the
beginning of the chapter. These scripts are in folders corresponding to the chapter
(Chapter 5, Chapter 10, and so forth) and have filenames such as JLDB_Build_#.sql
(substituting the chapter number for the # symbol). The initial database creation is done
at the beginning of Chapter 2 to create the JustLee Books database. Students should run
the scripts as instructed to have a copy of the tables stored in their schemas. You should
instruct your students on how to access and copy data files to their own computers. The
chapters and projects in this book were tested with Oracle 12c Standard Edition.

Cengage Learning Data Files
You are granted a license to copy data files to any computer or computer network used by
people who have purchased this book.

xx Read This Before You Begin

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R1
OVERVIEW OF DATABASE
CONCEPTS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you will be able to do the following:

• Define database terms

• Identify the purpose of a database management system (DBMS)

• Explain database design by using entity-relationship models and
normalization

• Explain the purpose of a Structured Query Language (SQL)

• Understand how this textbook’s topics are sequenced and how the two
sample databases are used

• Identify the software used in this textbook

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

Imagine you’re starting up an online book retail company. How will customer orders
be recorded? Will customers be able to search for products by name or keywords? Will you
be able to analyze sales information to track profits, determine product success, and target
marketing efforts to customers? Analyzing thousands of orders could take days without
using a database. A database simplifies these tasks because it’s a storage structure that
provides mechanisms for recording, manipulating, and retrieving data.

The database used throughout this textbook is based on the activities of a
hypothetical business, an online bookseller named JustLee Books. The company sells
books via the Internet to customers throughout the United States. When a new customer
places an order, he or she provides data such as name, billing and shipping addresses, and
items ordered. The company also uses a database for all books in inventory.

To access the data required for operating JustLee Books, management relies on a
DBMS. A database management system (DBMS) is used to create and maintain the
structure of a database, and then to enter, manipulate, and retrieve the data it stores.
Creating an efficient database design is the key to using a database effectively to support
an organization’s business operations.

This chapter introduces basic database terminology and discusses the process of
designing a database for JustLee Books.

D A T A B A S E T E R M I N O L O G Y

Whenever a customer opens an account with a company, certain data must be collected.
In many cases, the customer completes an online form that asks for the customer’s name,
address, and so on, as shown in Figure 1-1.

Customer C

Customer Information

Name: _________________________________

Street Address: __________________________

City: ________________________

State: _________ Zip: _________

Customer A

Customer B

Fields Record

File

FIGURE 1-1 Collecting customer information

While collecting customer information, a series of characters is identified for each item.
A character is the basic unit of data, and it can be a letter, number, or special symbol.

2

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A group of related characters (for example, the characters that make up a customer’s
name) is called a field. A field represents one attribute or characteristic (the name, for
instance) of the customer. A collection of fields about one customer (for example, name,
address, city, state, and zip code) is called a record. A group of records about the same
type of entity (such as customers or inventory items) is stored in a file. A collection of
interrelated files—such as those relating to customers, their purchases, and their
payments—is stored in a database.

These terms relate to the logical database design, but they are often used
interchangeably with the terminology for the physical database design. When creating the
physical database, a field is commonly referred to as a column, a record is called a row,
and a file is known as a table. A table is quite similar to a spreadsheet, in that it contains
columns and rows. Figure 1-2 shows a representation of these terms.

Tables

Record or row

Column or field

FIGURE 1-2 Database terminology

D A T A B A S E M A N A G E M E N T S Y S T E M

As mentioned earlier, a database is housed in a DBMS, which provides the functionality to
create and work with a database. This functionality includes the following:

• Data storage: Manage the physical structure of the database.
• Security: Control user access and privileges.
• Multiuser access: Manage concurrent data access.
• Backup: Enable recovery options for database failures.
• Data access language: Provide a language that allows database access.
• Data integrity: Enable constraints or checks on data.
• Data dictionary: Maintain information about database structure.

3

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

D A T A B A S E D E S I G N

To determine the most appropriate structure of fields, records, and files in a database,
developers go through a design process. The design and development of a system is
accomplished through a process that’s formally called the Systems Development Life
Cycle (SDLC) and consists of the following steps:

1. Systems investigation: Understanding the problem
2. Systems analysis: Understanding the solution to the previously identified

problem
3. Systems design: Defining the logical and physical components
4. Systems implementation: Creating the system
5. Systems integration and testing: Placing the system into operation for testing
6. Systems deployment: Placing the system into production
7. Systems maintenance and review: Evaluating the implemented system

Although the SDLC is a methodology designed for any type of system an organization
needs, this chapter specifically addresses developing a DBMS. For the purposes of this
discussion, assume the problem identified is the need to collect and maintain data about
customers and their orders. The identified solution is to use a database to store all needed
data. The discussion that follows presents the steps for designing the database.

N O T E

A variety of SDLC models have been developed to address different development environments. The
steps presented here represent a traditional waterfall model. Other models, such as fountain and rapid
prototyping, involve a different series of steps.

To design a database, the requirements of the database—inputs, processes, and
outputs—must be identified first. Usually, the first question asked is, “What information, or
output, must come from this database?” or “What questions should this database be able to
answer?” By understanding the necessary output, the designer can then determine what
information should be stored in the database. For example, if the organization wants to
send birthday cards to its customers, the database must store each customer’s birth date.

After the requirements of a database have been identified, an entity-relationship (E-R)
model is usually drafted to better understand the data to be stored in the database. In an E-R
model, an entity is any person, place, or thing with characteristics or attributes that will be
included in the system. An E-R model is a diagram that identifies the entities (customers,
books, orders, and such) in the database, and it shows how the entities are related to one
another. It serves as the logical representation of the physical system to be built.

The next two sections explain the construction of an E-R model and the
normalization process used to determine appropriate entities for a database.

N O T E

An E-R model is also called an entity-relationship diagram (ERD).

4

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Entity-Relationship (E-R) Model
In an E-R model, an entity is usually represented as a square or rectangle. As shown in
Figure 1-3, a line depicts how an entity’s data relates to another entity. If the line
connecting two entities is solid, the relationship between the entities is mandatory.
However, if the relationship between two entities is optional, a dashed line is used.

FIGURE 1-3 E-R model notation examples

As shown in Figure 1-3, the following types of relationships can exist between two
entities:

• One-to-one: In a one-to-one relationship, each occurrence of data in one
entity is represented by only one occurrence of data in the other entity.
For example, if each classroom is assigned to only one academic division, a
one-to-one relationship is created between the classroom and division
entities. This type of relationship is depicted in an E-R model as a simple
straight line.

• One-to-many: In a one-to-many relationship, each occurrence of data in one
entity can be represented by many occurrences of the data in the other
entity. For example, a class has only one instructor, but an instructor might
teach many classes. A one-to-many relationship is represented by a straight
line with a crow’s foot at the “many” end.

• Many-to-many: In a many-to-many relationship, data can have multiple
occurrences in both entities. For example, a class can consist of more than
one student, and a student can take more than one class. A straight line with
a crow’s foot at each end indicates a many-to-many relationship.

Figure 1-4 shows a simplified E-R model for the JustLee Books database used
throughout this textbook. A more thorough E-R model would include a list of attributes for
each entity.

N O T E

The notations in the sample E-R models in this chapter reflect only one way of diagramming entity
relationships. If you’re using a modeling software tool, you might encounter different notations to
represent relationships. For example, Microsoft products typically represent the many side of a
relationship with the infinity symbol (∞). In addition, some modeling tools automatically add the common
fields or foreign key columns needed as relationships are defined.

5

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Customers Orders Books Author

Publisher

FIGURE 1-4 An E-R model for JustLee Books

The following relationships are defined in the E-R model in Figure 1-4:

• Customers can place multiple orders, but each order can be placed by only one
customer (one-to-many). The dashed line between Customers and Orders
means a customer can exist in the database without having a current order
stored in the ORDERS table. Therefore, this relationship is considered optional.

• An order can consist of more than one book, and a book can appear on more
than one order (many-to-many).

• A book can have more than one author, and an author can write more than
one book (many-to-many).

• A book can have only one publisher, but a publisher can publish more than
one book (one-to-many).

Although some E-R modeling approaches are more complex, the simplified notations
used in this chapter do point out the important relationships among entities, and using
them helps designers identify potential problems in table layouts. After examining the E-R
model in Figure 1-4, you should have noticed the two many-to-many relationships. Before
creating the database, all many-to-many relationships must be reduced to a set of one-
to-many relationships, as you learn in “Relating Tables in the Database” later in this
chapter.

Identifying entities and relationships in the database design process is important
because entities are usually represented as a table, and relationships can reveal whether
additional tables are needed in the database. If the problem arising from the many-
to-many relationship in the E-R model isn’t apparent to a designer at this point, it will
become clear during the normalization process.

Database Normalization
Many people unfamiliar with database design principles often ask, “Why not just put all the
data in one big table?” This single-table approach leads to problems of data redundancy
(duplication) and data anomalies (data inconsistencies). For example, review the order data
recorded in Table 1-1. The customer information is repeated for each order a customer
places (redundancy). Also, the city data in the last row is different from the first two rows.
Under these circumstances, it isn’t clear whether the last row actually represents a different

6

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

customer, whether the previous customer had an address change, or whether the city
information is incorrect (data anomaly).

TABLE 1-1 Single-Table Approach Example

Last Name First Name City State Zip Order Date Order #

Jones Pat Norfolk VA 24553 3/22/2009 45720

Jones Pat Norfolk VA 24553 5/28/2009 48243

Jones Pat Suffolk VA 26544 9/05/2009 51932

To avoid these data issues, database normalization is used to create a design that
reduces or eliminates data redundancy and, therefore, avoids data anomalies. In general,
normalization helps database designers determine which attributes, or fields, belong to
each entity. In turn, this information helps determine which fields belong in each table.
Normalization is a multistage process that enables designers to take the raw data to be
collected about an entity and develop the data into a structured, normalized form that
reduces the risks associated with data redundancy. Data redundancy poses a special
problem in databases because storing the same data in different places can cause problems
when updates or changes to data are required.

Most novices have difficulty understanding the impact of storing unnormalized data—
data that hasn’t been designed by using a normalization process. Here’s an example.
Suppose you work for a large company and submit a change-of-address form to the Human
Resources (HR) Department. If all the data HR stores is normalized, a data entry clerk needs
to update only the EMPLOYEES master table with your new address.

However, if the data is not stored in a normalized format, the data entry clerk likely
needs to enter the change in each table containing your address—the EMPLOYEE
RECORD table, the HEALTH INSURANCE table, the SICK LEAVE table, the ANNUAL TAX
INFORMATION table, and so on—even though all this data is stored in the same database.
As a result, if your mailing address is stored in several tables (or even duplicated in the
same table) and the data entry clerk fails to make the change in one table, you might get a
paycheck showing one address and, at the end of the year, have your W-2 form mailed to a
different address! Storing data in a normalized format means only one update is required
to reflect the new address, and it should always be the one that appears whenever your
mailing address is needed.

A portion of the database for JustLee Books is used in this section to step through the
normalization process—specifically, the books sold to customers. For each book, you need to
store its International Standard Book Number (ISBN), title, publication date, wholesale cost,
retail price, category (literature, self-help, and so forth), publisher name, contact person at the
publisher for reordering the book (and telephone number), and author or authors’ names.

Table 1-2 shows a sample of the data that must be maintained. For ease of illustration,
the publishers’ telephone numbers are eliminated, and the authors’ names use just the
first initial and last name. The first step in determining which data should be stored in
each table is identifying a primary key, which is a field that identifies each record

7

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

uniquely. You might select the ISBN to identify each book because no two books ever have
the same ISBN.

N O T E

When data that already exists, such as a book ISBN, is used as a primary key, it’s often referred to as
an intelligent key or a natural key. At times, data serving as a primary key doesn’t exist, so a system-
generated unique value is used as a primary key. For example, JustLee Books doesn’t have an ID to
associate with book authors, so an ID number is generated. This type of data is referred to as a
surrogate key or an artificial key.

However, note that in Table 1-2, if a book has more than one author, the Author field
contains more than one data value. When a record contains repeating groups (that is,
multiple entries for a single column), it’s considered unnormalized. First-normal form
(1NF) indicates that all values of the columns are atomic—meaning they contain no
repeating values. To convert records to 1NF, remove the repeating values by making each
author entry a separate record, as shown in Table 1-3.

TABLE 1-2 ISBN as the Primary Key

ISBN Title Publication
Date

Cost Retail Category Publisher Contact Author

8843172113 Database
Implementation

04-JUN-03 31.40 55.95 Computer American
Publishing

Davidson T. Peterson,
J. Austin,
J. Adams

1915762492 Handcranked
Computers

21-JAN-05 21.80 25.00 Computer American
Publishing

Davidson W. White,
L. White

TABLE 1-3 The BOOKS Table in 1 NF

ISBN Title Publication
Date

Cost Retail Category Publisher Contact Author

8843172113 Database
Implementation

04-JUN-03 31.40 55.95 Computer American
Publishing

Davidson T. Peterson

8843172113 Database
Implementation

04-JUN-03 31.40 55.95 Computer American
Publishing

Davidson J. Austin

8843172113 Database
Implementation

04-JUN-03 31.40 55.95 Computer American
Publishing

Davidson J. Adams

1915762492 Handcranked
Computers

21-JAN-05 21.80 25.00 Computer American
Publishing

Davidson W. White

1915762492 Handcranked
Computers

21-JAN-05 21.80 25.00 Computer American
Publishing

Davidson L. White

8

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Table 1-3, the repeating values of authors’ names are eliminated—each record now
contains no more than one data value for the Author field. Notice that you can no longer
use the book’s ISBN as the primary key because more than one record now has the same
value in the ISBN field. The only combination of fields that identifies each record
uniquely is the ISBN and Author fields together. When more than one field is used as the
primary key for a table, the combination of fields is usually referred to as a composite
primary key. Now that the repeating values have been eliminated and the records can be
identified uniquely, the data is in 1NF, but a few design problems remain.

A problem known as partial dependency can occur when the primary key consists of
more than one field. Partial dependency means the fields contained in a record (row)
depend on only one portion of the primary key. For example, a book’s title, publication date,
publisher name, and so on, all depend on the book itself, not on who wrote the book (the
author). The simplest way to resolve a partial dependency is to break the composite
primary key into two parts—each representing a separate table. In this case, you can
create a table for books and a table for authors. By removing the partial dependency, you
have converted the BOOKS table to second-normal form (2NF), as shown in Table 1-4.

TABLE 1-4 The BOOKS Table in 2NF

ISBN Title Publication
Date

Cost Retail Category Publisher Contact

8843172113 Database
Implementation

04-JUN-03 31.40 55.95 Computer American
Publishing

Davidson

1915762492 Handcranked
Computers

21-JAN-05 21.80 25.00 Computer American
Publishing

Davidson

Now that the BOOKS records are in 2NF, you must look for any transitive dependencies.
A transitive dependency means at least one value in the record isn’t dependent on the
primary key but on another field in the record. In this case, the contact person from the
publisher’s office is actually dependent on the publisher, not on the book. To remove the
transitive dependency from the BOOKS table, remove the contact information and place it in
a separate table. Because the table was in 2NF and had all transitive dependencies removed,
the BOOKS table is now in third-normal form (3NF), as shown in Table 1-5.

TABLE 1-5 The BOOKS Table in 3NF

ISBN Title Publication
Date

Cost Retail Category Publisher

8843172113 Database
Implementation

04-JUN-03 31.40 55.95 Computer American
Publishing

1915762492 Handcranked
Computers

21-JAN-05 21.80 25.00 Computer American
Publishing

9

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There are several levels of normalization beyond 3NF; however, in practice, tables are
typically normalized only to 3NF. The following list summarizes the normalization steps
explained in this section:

1. 1NF: Eliminate all repeating values and identify a primary key or primary
composite key.

2. 2NF: Make certain the table is in 1NF and eliminate any partial dependencies.
3. 3NF: Make certain the table is in 2NF and remove any transitive

dependencies.

Relating Tables in the Database
After the BOOKS table is in 3NF, you can then normalize each remaining table of the
database. After each table has been normalized, make certain all relationships among tables
have been established. For example, you need a way to determine the author(s) for each
book in the BOOKS table. Because authors’ names are stored in a separate table, there must
be some way to join data. Usually, a connection between two tables is established through a
common field—one existing in both tables. In many cases, the common field is a primary
key for one of the tables. In the second table, it’s referred to as a foreign key. The purpose of
a foreign key is to establish a relationship with another table or tables. The foreign key
appears in the “many” side of a one-to-many relationship.

An accepted industry standard is to use an ID code (numbers and/or letters) to
represent an entity; this code reduces the chances of data entry errors. For example, instead
of entering each publisher’s entire name in the BOOKS table, you assign each publisher an
ID code in the PUBLISHER table, and then list that ID code in the BOOKS table as a foreign
key to retrieve the publisher’s name for each book. In this case, the publisher ID code could
be the primary key in the PUBLISHER table and a foreign key in the BOOKS table.

During the normalization of JustLee Books’ database, the many-to-many relationships
prevent normalizing author and order data to 3NF. The unnormalized version of the data
has repeating groups for authors in the BOOKS table and for books in the ORDERS table.
As part of converting the data into 3NF, two additional tables must be created:
ORDERITEMS and BOOKAUTHOR.

A many-to-many relationship can’t exist in a relational database. The most common
approach to eliminating a many-to-many relationship is to create two one-to-many relationships
by adding a bridging entity. A bridging entity is placed between the original entities and serves
as a “filter” for the data. The ORDERITEMS table, a bridging entity, creates one-to-many
relationships with the ORDERS and BOOKS tables. The BOOKAUTHOR table, another bridging
entity, creates one-to-many relationships with the BOOKS and AUTHOR tables.

After normalization, the final table structures are as shown in Figure 1-5. Notice the
following about the table structures:

• The underlined fields in each table indicate the primary key for that table. As men-
tioned, a primary key is the field that uniquely identifies each record in the table.

• For the bridging entities that were added, note that composite primary keys
uniquely identify each record. The composite primary key for the BOOK-
AUTHOR table was created by using the primary key from each table it joins
(BOOKS and AUTHOR).

10

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ISBN
ISBN
AuthorID

AuthorID
Lname

Name
Contact
Phone

FnameTitle
Pubdate
PubID

PubID

Cost
Retail

Gift
Minretail
Maxretail

Discount
Category

ORDERS

ORDERITEMS

BOOKS

PROMOTION

BOOKAUTHOR

PUBLISHER

AUTHOR

CUSTOMERS
Customer#
Lastname
Firstname
Email
Address
City
State
Zip
Referred
Region

Customer#
Order#

Orderdate
Shipdate
Shipstreet
Shipcity
Shipstate
Shipzip
Shipcost

Order#
Item#
ISBN
Quantity
Paideach

FIGURE 1-5 JustLee Books’s table structures after normalization

Figure 1-6 shows a portion of the BOOKS table and the fields it contains after
normalization. As mentioned, each field represents a characteristic, or attribute, that’s
being collected for an entity. The group of attributes for a specific occurrence (for
example, a customer or a book) is called a record. In Oracle 12c, a list of a table’s contents
uses columns to represent fields and rows to represent records. These terms are used
interchangeably throughout this textbook.

ISBN TITLE PUBDATE ... CATEGORY

1059831198 BODYBUILD IN 10 MINUTES A DAY 21-JAN-01 ... FITNESS

0401140733 REVENGE OF MICKEY 14-DEC-01 ... FAMILY LIFE

4981341710 BUILDING A CAR WITH TOOTHPICKS 18-MAR-02 ... CHILDREN

8843172113 DATABASE IMPLEMENTATION 04-JUN-99 ... COMPUTER

0299282519 THE WOK WAY TO COOK 11-SEP-00 ... COOKING

8117949391 BIG BEAR AND LITTLE DOVE 08-NOV-01 ... CHILDREN

0132149871 HOW TO GET FASTER PIZZA 11-NOV-02 ... SELF HELP

9247381001 HOW TO MANAGE THE MANAGER 09-MAY-99 ... BUSINESS

2147428890 SHORTEST POEMS 01-MAY-01 ... LITERATURE

Record

Field

FIGURE 1-6 A portion of the BOOKS table after normalization

11

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The term lookup table is a common description for the table referenced in a foreign
key relationship. For example, a Customer# field is included in the ORDERS table to link
each order with a specific customer. You “look up” the Customer# value assigned to an
order in the CUSTOMERS table to determine customer information, such as last name,
state, and zip code. Many lookup tables simply provide descriptive values to minimize disk
use and help ensure data consistency. For example, the BOOKS table contains a Category
column including values such as computer, cooking, and business. Instead of storing these
kinds of text descriptions in each book record, another table could be created to contain a
category code and category description, as shown in Table 1-6. The category code is
assigned for each book record, and a relationship to this new table allows linking the full
category name with the book. Lookup tables are often used in application development to
provide values in a selection list for a user to choose one for data input.

TABLE 1-6 Possible Category Lookup Table

Category Code Category Description

10 Computer

20 Cooking

30 Business

40 Family Literature

S T R U C T U R E D Q U E R Y L A N G U A G E (S Q L)

The industry standard for interacting with a relational database is SQL—officially
pronounced as “S-Q-L,” but many still use the pronunciation “sequel.” Structured Query
Language (SQL) is not considered a programming language, such as VB.NET, COBOL, or
Java. It’s a data sublanguage with commands focused on creating database objects and
manipulating data stored in a database. With SQL statements, users can instruct the DBMS
to create and modify tables, enter and maintain data, and retrieve data for a variety of
situations. You’ll be issuing SQL commands throughout this textbook, using an Oracle 12c
database. Five types of SQL commands, listed in Table 1-7, are addressed in this textbook.

TABLE 1-7 SQL Command Types

Type Example Description

Query SELECT Retrieve data values

Data manipulation
language (DML)

INSERT, UPDATE, DELETE Create or modify data values

Data definition
language (DDL)

CREATE, ALTER, DROP Define data structures

12

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 1-7 SQL Command Types (continued)

Type Example Description

Transaction control (TC) COMMIT, ROLLBACK Save or undo data value
modifications

Data control language
(DCL)

GRANT, REVOKE Set permissions to access
database structures

Two industry-accepted committees set the industry standards for SQL: the American
National Standards Institute (ANSI) and the International Organization for
Standardization (ISO). Using industry-established standards allows people to use the
same skills to work with different relational DBMSs and enables various programs to
communicate with different databases without major redevelopment efforts. The benefit
for users (and students) is that the SQL statements learned with Oracle 12c can be
transferred to another DBMS program, such as MySQL or Microsoft SQL Server. To work
in another environment, you might need to modify statements slightly, but the basic
structure of statements and keywords is usually the same. A few key differences between
database SQL implementations are covered in Appendix F.

D A T A B A S E S U S E D I N T H I S T E X T B O O K

Two main databases are referenced throughout this textbook. The first, JustLee Books, is
described in detail in the following paragraphs. This database is used primarily to learn data
retrieval statements. The second, City Jail, is used in case studies, and you design and create
this database as you work through the chapter case studies. The Chapter 1 case study
presents the city jail’s information needs and challenges you to design the database. The case
studies in Chapters 3 through 6 challenge you to construct objects in the database.

The initial organization of the database structure for JustLee Books was shown in
Figure 1-5. The database is used first to record customers’ orders. Customers and JustLee
employees can identify a book by its ISBN, title, or author name. Employees can also
determine when an order was placed and when, or if, the order was shipped. The database
also stores the publisher contact information so that the bookseller can reorder a book.

Basic Assumptions
Three assumptions were made when designing the JustLee Books database:

• An order isn’t shipped until all items for the order are available. (In other
words, there are no back orders or partial order shipments.)

• All addresses are in the United States; otherwise, the structure of the
Address/ Zip Code fields would need to be altered because many countries
use different address information, such as province names.

• Only orders placed in the current month or orders placed in previous months
that didn’t ship are stored in the ORDERS table. At the end of each month,
all completed orders are transferred to an annual SALES table. This transfer

13

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

allows faster processing of data in the ORDERS table; when necessary, users
can still access information pertaining to previous orders through the annual
SALES table.

In addition to recording data, management wants to be able to track the type of books
that customers purchase. Although databases were originally developed to record an
organization’s data transactions, many have realized the importance of having data to
support other business functions. Data collected for a database can be used for other
purposes. For example, organizations that deal with thousands or millions of sales
transactions each month usually store copies of transactions in a separate database for
various types of research. Analyzing historical sales data and other information stored in
an organization’s database is generally referred to as data mining.

For this reason, the bookseller’s database also includes data the Marketing Department
can use to determine which categories of books customers purchase most often. By
knowing buyers’ purchasing habits, JustLee Books can promote new items in inventory to
customers who purchase that type of book frequently. For example, if a customer has
placed several orders for children’s books, he or she might purchase similar books in the
future. The Marketing Department can then target promotions for other children’s books
to that customer, knowing there’s an increased likelihood of a purchase.

N O T E

Keep in mind the JustLee Books database has been kept small in the extent of tables, variety of data
columns, and number of data rows in an effort to ease learning SQL fundamentals. A production retail
database usually addresses many other data elements.

Tables in the JustLee Books Database
Next, take a closer look at each table in the JustLee Books database, referring to the table
structures in Figure 1-5.

CUSTOMERS table: Notice that the CUSTOMERS table is the first table in Figure 1-5.
It serves as a master table for storing basic data related to any customer who has placed
an order with JustLee Books. It stores the customer’s name, e-mail address, and mailing
address, plus the Customer# of the person who referred that customer to the company. As
a promotion to attract new customers, the bookstore sends a 10% discount coupon to any
customer referring a friend who makes a purchase. The region data allows JustLee to track
and analyze sales by geographic service areas.

Why is a Customer# field included in the CUSTOMERS table? Because you might
have two customers with the same name, and by assigning each customer a number, you
can uniquely identify each person. Using account numbers or codes can also decrease the
likelihood of data entry errors caused by incorrect spelling or abbreviations. Keep in mind
the Customer# column serves as the primary key column for the CUSTOMERS table.

BOOKS table: The BOOKS table stores each book’s ISBN, title, publication date,
publisher ID, wholesale cost, and retail price. The table also stores a category name for each
book (for example, Fitness, Children, Cooking) to track customers’ purchasing patterns, as

14

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mentioned. Currently, the category’s actual name is entered in the database. The Discount
field indicates the current price reduction offered. Therefore, a book’s current price is the
retail amount less the discount amount, if applicable.

AUTHOR and BOOKAUTHOR tables: As shown in Figure 1-5, the AUTHOR table
maintains a list of authors’ names. Because a many-to-many relationship originally existed
between the books entity and the authors entity, the BOOKAUTHOR table was created as
a bridging table between these two entities. The BOOKAUTHOR table stores each book’s
ISBN and author ID. If you need to know who wrote a particular book, you have the DBMS
look up the book’s ISBN in the BOOKS table, then look up each entry of the ISBN in the
BOOKAUTHOR table, and finally trace the author’s name back to the AUTHORS table
through the AuthorID field.

ORDERS and ORDERITEMS tables: Data about a customer’s order is divided into two
tables: ORDERS and ORDERITEMS. The ORDERS table identifies which customer placed
each order, the date the order was placed, the date it was shipped, and the shipping cost
charged. Because the shipping address might be different from a customer’s billing address,
the shipping address is also stored in the ORDERS table. If a customer’s order includes two
or more books, the ORDERS table could contain a repeating group. Therefore, the items
purchased for each order are stored separately in the ORDERITEMS table.

The ORDERITEMS table records the order number, the ISBN of the book being
purchased, and the quantity for each book. To uniquely identify each item in an order when
multiple items are purchased, the table includes an Item# field that corresponds to the
item’s position in the sequence of products ordered. For example, if a customer places an
order for three different books, the first book listed in the order is assigned Item# 1, the
second book listed is Item# 2, and so on. A variation of this table could use the combination
of the Order# and the book’s ISBN to identify each product for an order. However, the
concept of item# or line# is widely used in the industry to identify line items on an invoice
or in a transaction, so it has been included in this table to familiarize you with the concept.

The Paideach field in the ORDERITEMS table records the price the customer actually
paid per copy for a specific book. This price is recorded because the Retail field in the
BOOKS table is modified as book prices change, and the current database doesn’t
maintain a historical book price list.

PUBLISHER table: The PUBLISHER table contains the publisher’s ID code, name,
contact person, and telephone number. The PUBLISHER table can be joined to the BOOKS
table through the PubID field, which is the common field. This linked data from the
PUBLISHER and BOOKS table enables you to determine which publisher to contact when
you need to reorder books by identifying which books you obtained from each publisher.

PROMOTION table: The last table in Figure 1-5 is the PROMOTION table. JustLee
Books has an annual promotion that includes a gift with each book purchased. The gift is
based on the book’s retail price. Customers ordering books that cost less than $12 receive
a certain gift, and customers buying books costing between $12.01 and $25 receive a
different gift. The PROMOTION table identifies the gift and the minimum and maximum
retail values of the range. There’s no exact value that matches the Retail field in the
BOOKS table; therefore, to determine the correct gift, you need to determine whether a
retail price falls within a particular range.

An actual online bookseller’s database would contain thousands of customers and books
and, naturally, be more complex than the database shown in this textbook. For example,

15

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

this database doesn’t track data such as the quantity on hand for each book, discounted
prices, and sales tax. Furthermore, to simplify the display of data on the screen and in
reports, each table contains only a few records.

N O T E

You can find a complete list of the JustLee Books tables in Appendix A. The Appendix A listing
represents the initial database columns and data values. Keep in mind that you modify this database as
you progress through subsequent chapters.

T O P I C S E Q U E N C E

The remaining chapters of this textbook introduce the SQL statements and concepts
you need to know for the first DBA or Developer Certification exam for Oracle9i,
Oracle 10g, or Oracle 12c. They also prepare you to use Oracle in the workplace.
The early chapters are organized in the same sequence you would use to create a
database. After you learn how to create the database, the focus moves to data
retrieval, which covers a vast array of options. The appendixes cover a variety of
topics to complement the textbook, such as software tool use and SQL differences in
various database products. However, before you can build a database, you need to
understand how to perform basic data queries, which are covered in Chapter 2,
“Basic SQL SELECT Statements.”

Working through the examples in each chapter and completing the assignments help
enhance your learning process.

S O F T W A R E U S E D I N T H I S T E X T B O O K

The Oracle 12c database system is used for this textbook. Oracle 12c is offered in a
variety of editions, including Personal, Standard, and Enterprise. Any of these
editions is suitable for performing all examples and assignments in this textbook.
Two client software tools are included with Oracle 12c: SQL*Plus and SQL
Developer. These tools are introduced briefly in the next chapter. All figures in this
textbook are shown in the SQL Developer interface; however, either client tool can
be used. Previous versions of Oracle (Oracle 10g or Oracle 11g) can be used for
much of the work in this textbook, with the exception of several new features
requiring the current version.

Previous versions of Oracle offered a Windows-based and an Internet interface
installation of SQL*Plus (iSQL*Plus). Both these SQL*Plus editions were deprecated
with Oracle 12c. You can still use the previous version of the Windows-based
SQL*Plus to connect to Oracle 12c, if you like. The Oracle 12c SQL*Plus client uses
a command-line interface. The SQL Developer tool provides a graphical user
interface (GUI) to view database objects, enter SQL statements with syntax color
coding, and view output.

16

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• A DBMS is used to create and maintain a database.
• A database is composed of a group of interrelated tables.
• A file is a group of related records. A file is also called a table in the physical

database.
• A record, also called a row, is a group of related fields about one specific entity.
• Before building a database, designers must look at the system’s input, processing,

and output requirements. Tables to be included in the database can be identified
with the E-R model. An entity in the E-R model usually represents a table in the
physical system.

• Through the normalization process, designers can determine whether additional
tables are needed and which attributes or fields belong in each table.

• A record is considered unnormalized if it contains repeating groups.
• A record is in first-normal form (1NF) if no repeating groups exist and it has a

primary key.
• Second-normal form (2NF) is achieved if the record is in 1NF and has no partial

dependencies.
• After a record is in 2NF and all transitive dependencies have been removed,

then it’s in third-normal form (3NF), which is generally enough for most
databases.

• Normalization results in one-to-many relationships between tables.
• A primary key is used to uniquely identify each record.
• A common field is used to join data contained in different tables.
• A foreign key is a common field that exists between two tables but is also a

primary key in one of the tables.
• A lookup table is a common term for the table referenced in a foreign key

relationship, which provides a more descriptive value for the data.
• A Structured Query Language (SQL) is a data sublanguage for navigating data

stored in a database’s tables. With SQL statements, users can instruct the DBMS
to create and modify tables, enter and maintain data, and retrieve data for a
variety of situations.

Review Questions

1. What is the purpose of an E-R model?

2. What is an entity?

3. Give an example of three entities that might exist in a database for a medical office, and list
some attributes that would be stored in a table for each entity.

4. Define a one-to-many relationship.

5. Discuss the problems that can be caused by data redundancy.

6. Explain the role of a primary key.

7. Describe how a foreign key is different from a primary key.

17

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. List the steps of the normalization process.

9. What type of relationship can’t be stored in a relational database? Why?

10. Identify at least three reasons an organization might analyze historical sales data stored in
its database.

Multiple Choice

1. Which of the following represents a row in a table?

a. an attribute

b. a characteristic

c. a field

d. a record

2. Which of the following defines a relationship in which each occurrence of data in one entity
is represented by multiple occurrences of the data in the other entity?

a. one-to-one

b. one-to-many

c. many-to-many

d. none of the above

3. An entity is represented in an E-R model as a(n):

a. arrow

b. crow’s foot

c. dashed line

d. none of the above

4. Which of the following is not an E-R model relationship?

a. some-to-many

b. one-to-one

c. one-to-many

d. many-to-many

5. Which of the following symbols represents a many-to-many relationship in an E-R model?

a. a straight line

b. a dashed line

c. a straight line with a crow’s foot at both ends

d. a straight line with a crow’s foot at one end

6. Which of the following can contain repeating groups?

a. unnormalized data

b. 1NF

c. 2NF

d. 3NF

18

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Which of the following defines a relationship in which each occurrence of data in one entity
is represented by only one occurrence of data in the other entity?

a. one-to-one

b. one-to-many

c. many-to-many

d. none of the above

8. Which of the following has no partial or transitive dependencies?

a. unnormalized data

b. 1NF

c. 2NF

d. 3NF

9. Which of the following symbols represents a one-to-many relationship in an E-R model?

a. a straight line

b. a dashed line

c. a straight line with a crow’s foot at both ends

d. a straight line with a crow’s foot at one end

10. Which of the following has no partial dependencies but can contain transitive
dependencies?

a. unnormalized data

b. 1NF

c. 2NF

d. 3NF

11. Which of the following has no repeating groups but can contain partial or transitive
dependencies?

a. unnormalized data

b. 1NF

c. 2NF

d. 3NF

12. The unique identifier for a record is called the:

a. foreign key

b. primary key

c. turn key

d. common field

13. Which of the following fields also serves as a primary key in another table when two tables
are joined together on that value?

a. foreign key

b. primary key

19

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. turn key

d. repeating group key

14. A unique identifier for a data row that consists of more than one field is commonly called a:

a. primary plus key

b. composite primary key

c. foreign key

d. none of the above

15. Which of the following symbols represents an optional relationship in an E-R model?

a. a straight line

b. a dashed line

c. a straight line with a crow’s foot at both ends

d. a straight line with a crow’s foot at one end

16. Which of the following, when used in an E-R model, indicates the need for an additional
table?

a. sometimes-to-always relationship

b. one-to-one relationship

c. one-to-many relationship

d. many-to-many relationship

17. Which of the following represents a field in a table?

a. a record

b. a row

c. a column

d. an entity

18. Which of the following defines a relationship in which data can have multiple occurrences in
each entity?

a. one-to-one

b. one-to-many

c. many-to-many

d. none of the above

19. When part of the data in a table depends on a field in the table that isn’t the table’s primary
key, it’s known as:

a. transitive dependency

b. partial dependency

c. psychological dependency

d. a foreign key

20

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20. Which of the following is used to join data contained in two or more tables?

a. primary key

b. unique identifier

c. common field

d. foreign key

Hands-On Assignments

To perform assignments 1 to 5, refer to the table structures in Figure 1-5 and the table listings in
Appendix A.

1. Which tables and fields would you access to determine which book titles have been
purchased by a customer and when the order shipped?

2. How would you determine which orders have not yet been shipped to the customer?

3. If management needed to determine which book category generated the most sales in April
2009, which tables and fields would they consult to derive this information?

4. Explain how you would determine how much profit was generated from orders placed in
April 2009.

5. If a customer inquired about a book written in 2003 by an author named Thompson, which
access path (tables and fields) would you need to follow to find the list of books meeting
the customer’s request?

In assignments 6 to 10, create a simple E-R model depicting entities and relationship lines
for each data scenario.

6. A college needs to track placement test scores for incoming students. Each student can
take a variety of tests, including English and math. Some students are required to take
placement tests because of previous coursework.

7. Every employee in a company is assigned to one department. Every department can
contain many employees.

8. A movie megaplex needs to collect movie attendance data. The company maintains 16
theaters in a single location. Each movie offered can be shown in one or more of the
available theaters and is typically scheduled for three to six showings in a day. The movies
are rotated through the theaters to ensure that each is shown in one of the stadium-seating
theaters at least once.

9. An online retailer of coffee beans maintains a long list of unique coffee flavors. The
company purchases beans from a number of suppliers; however, each specific flavor of
coffee is purchased from only a single supplier. Many of the customers are repeat
purchasers and typically order at least five flavors of beans in each order.

10. Data for an information technology conference needs to be collected. The conference has a
variety of sessions scheduled over a two-day period. All attendees must register for the
sessions they plan to attend. Some speakers are presenting only one session, whereas
others are handling multiple sessions. Each session has only one speaker.

21

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Advanced Challenge

To perform this activity, refer to the table structures in Figure 1-5 and the table listings in
Appendix A.

In this chapter, the normalization process was shown for just the BOOKS table. The other
tables in the JustLee Books database are shown after normalization. Because the database
needs to contain data for each customer’s order, perform the steps for normalizing the following
data elements to 3NF:

• Customer’s name and billing address
• Quantity and retail price of each item ordered
• Shipping address for each order
• Date each order was placed and the date it was shipped

Assume the unnormalized data in the list is stored in one table. Provide your instructor with
a list of the tables you have identified at each step of the normalization process (that is, 1NF,
2NF, 3NF) and the attributes, or fields, in each table. Remember that each customer can place
more than one order, each order can contain more than one item, and an item can appear on
more than one order.

Case Study: City Jail

Your company receives the following memo. First, based on the memo, create an initial database
design (E-R model) for the City Jail that indicates entities, attributes (columns), primary keys, and
relationships. In developing your design, consider the columns needed to build relationships
between the entities. Use only the entities identified in the memo to develop the E-R model.

Second, create a list of additional entities or attributes not identified in the memo that might
be applicable to a crime-tracking database.

T I P

Keep in mind that the memo is written from an end-user perspective—not by a database developer!

MEMO
To: Database Consultant
From: City Jail Information Director
Subject: Establishing a Crime-Tracking Database System

It was a pleasure meeting with you last week. I look forward to working with your company to
create a much-needed crime-tracking system. As you requested, our project group has outlined
the crime-tracking data needs we anticipate. Our goal is to simplify the process of tracking
criminal activity and provide a more efficient mechanism for data analysis and reporting. Please
review the data needs outlined below and contact me with any questions.

Criminals: name, address, phone number, violent offender status (yes/no), probation status (yes/
no), and aliases

Crimes: classification (felony, misdemeanor, other), date charged, appeal status (closed, can
appeal, in appeal), hearing date, appeal cutoff date (always 60 days after the hearing date),
arresting officers (can be more than one officer), crime codes (such as burglary, forgery, assault;

22

Chapter 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hundreds of codes exist), amount of fine, court fee, amount paid, payment due date, and charge
status (pending, guilty, not guilty)

Sentencing: start date, end date, number of violations (such as not reporting to probation
officer), and type of sentence (jail period, house arrest, probation)

Appeals: appeal filing date, appeal hearing date, status (pending, approved, and disapproved)
Note: Each crime case can be appealed up to three times.

Police officers: name, precinct, badge number, phone contact, status (active/inactive)

Additional notes:

• A single crime can involve multiple crime charges, such as burglary and assault.
• Criminals can be assigned multiple sentences. For example, a criminal might be

required to serve a jail sentence followed by a period of probation.

23

Overview of Database Concepts

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R2
BASIC SQL SELECT
STATEMENTS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you will be able to do the following:

• Create the initial database

• Identify keywords, mandatory clauses, and optional clauses in a SELECT
statement

• Select and view all columns of a table

• Select and view one column of a table

• Display multiple columns of a table

• Use a column alias to clarify the contents of a particular column

• Perform basic arithmetic operations in the SELECT clause

• Remove duplicate lists by using the DISTINCT or UNIQUE keyword

• Use concatenation to combine fields, literals, and other data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

In Chapter 1, fundamental relational database design concepts were introduced along with
the role of SQL statements in interacting with a database. Before jumping into creating
database tables, learning to navigate in a database by using SQL SELECT statements is
advantageous. Querying the database enables you to verify existing database tables, the
structure of tables, and data values stored in tables.

In this chapter, you begin learning how to retrieve data from a database by using
some basic SELECT statements. In later chapters, you explore more options for querying
the database. Table 2-1 summarizes the commands covered in this chapter.

TABLE 2-1 Summary of Commands in This Chapter

Command Description Basic Syntax Structure Example

Command to view all columns
of a table

SELECT *
FROM tablename;

SELECT*
FROM books;

Command to view one column
of a table

SELECT columnname
FROM tablename;

SELECT title
FROM books;

Command to view multiple
columns of a table

SELECT columnname,
columnname, ...

FROM tablename;

SELECT title, pubdate
FROM books;

Command to assign an alias to
a column during display

SELECT columnname
[AS] alias

FROM tablename;

SELECT title AS titles
FROM books;
or
SELECT title titles
FROM books;

Command to perform
arithmetic operations
during retrieval

SELECT arithmetic
expression

FROM tablename;

SELECT retail-cost
FROM books;

Command to eliminate
duplication in output

SELECT DISTINCT
columnname

FROM tablename;
or
SELECT UNIQUE
columnname

FROM tablename;

SELECT DISTINCT state
FROM customers;
or
SELECT UNIQUE state
FROM customers;

Command to perform
concatenation of column
contents during display

SELECT
columnname ||
columnname

FROM tablename;

SELECT firstname ||
lastname

FROM customers;

Command to view the
structure of a table

DESCRIBE tablename DESCRIBE books

26

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the next section, you create the JustLee Books database. The tables in this
database are used in the chapter examples and Hands-On Assignments.

C R E A T I N G T H E J U S T L E E B O O K S D A T A B A S E

First, identify which software tool you’re using to connect to Oracle 12c and your login
information. Figure 2-1 shows the Oracle 12c SQL*Plus tool interface, and Figure 2-2
shows the Oracle 12c SQL Developer tool interface.

FIGURE 2-1 SQL*Plus interface

Execute
Statement
button

Run Script
button

FIGURE 2-2 SQL Developer interface

27

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Appendix B, “SQL*Plus and SQL Developer Overview,” to become familiar with
the interface you’re using. The appendix is separated into two sections: The first
introduces the use of the SQL*Plus interface, and the second addresses the SQL
Developer interface.

Next, create the JustLee Books database by executing the script provided in the data
files for this textbook. Locate the data files and verify that the JLDB_Build.sql file is
available in the Chapter2 folder. Work through the following steps for the SQL*Plus or
SQL Developer interface to create the database.

SQL*Plus:

1. Start SQL*Plus and log in.
2. To execute the script file, enter start C:\data\chapter2\JLDB_Build.sql at the

SQL> prompt. (For C:\data\chapter2\, substitute the drive letter and
pathname for your system. Make sure there are no spaces in the pathname.)

3. Press Enter.

SQL Developer:

1. From the menu, click File, Open and navigate to the JLDB_Build.sql file.
2. Click the file, and then click the Open button. You should see the script

statements in the work area.
3. Click the Run Script button above the work area (refer to Figure 2-2) to

execute the statements. You might be prompted to select a connection.

N O T E

If you want to see the script’s contents, you can open it with any text editor or word-processing program.
A script is simply a file containing SQL statements to be processed as a set. The database script for this
chapter is a series of CREATE TABLE and INSERT statements to construct the tables. You learn these
statements in later chapters. If you’re already familiar with constraints, note that some needed
constraints aren’t included in this initial script, as you’re adding more in Chapter 4.

T I P

In the SQL*Plus client tool, an @ symbol can be used in the place of the START keyword to execute
a script.

Now you can verify what tables exist and the structure of the tables. Enter and
execute the statement in Figure 2-3. This statement produces a list of table names
existing in the current user account. Verify that you have the eight tables listed in
Figure 2-3. The USER_TABLES object in this statement is part of the database’s data
dictionary, which is a collection of objects the DBMS manages to maintain information
about the database.

28

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-3 List of existing tables

N O T E

If you’re using the Oracle SYSTEM administrator account, four additional tables are available:
SALGRADE, BONUS, EMP, and DEPT. Oracle creates these tables automatically with a default
installation; they aren’t part of the JustLee database.

All code execution figures in this textbook are shown in the SQL Developer tool. Any
SELECT statement should be executed with the Execute Statement button. Any other
types of statements are executed with the Run Script button.

N O T E

Table information, such as column names, column datatypes, owner, and file size, is stored in the data
dictionary object. This information is often called metadata. The data dictionary is used throughout this
textbook to verify information about the database objects created.

After you have a list of existing tables, you can use the DESCRIBE command to view
the structure of a table. Figure 2-4 shows using the DESCRIBE command to list the
structure of the BOOKS table. Notice that the abbreviation DESC can be used instead of
the full word DESCRIBE. The listing shows the names and datatypes for all columns in
the table.

29

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-4 List the structure of the BOOKS table

T I P

The DESCRIBE command is an SQL*Plus command, not an SQL command, so a semicolon isn’t
necessary to end this statement.

The Chapter2 data files folder contains two files: JLDB_Build.sql and JLDB_Drop.sql.
If needed, you can rebuild the JustLee database at any time as you work through this
textbook. You might need to do this if you remove a row or table accidentally as you
experiment with SQL statements. To reconstruct the database, run the JLDB_Drop.sql
script first to remove any tables existing from the initial database creation done earlier in
this chapter. Then execute the JLDB_Build.sql script again to rebuild all the tables. Don’t
be concerned if you get any “object does not exist” errors from the JLDB_Drop.sql script.
These messages just indicate that the script attempted to remove a table that no longer
exists in your account.

S E L E C T S T A T E M E N T S Y N T A X

Most of the SQL operations performed on a database in a typical organization are
SELECT statements, which enable users to retrieve data from tables. A user can view all

30

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the fields and records in a table or specify displaying only certain fields and records. In
essence, the SELECT statement asks the database a question, which is why it’s also
known as a query.

After querying a database, the results that are displayed can be based on certain
conditions specified in the SELECT statement. In other words, what’s displayed is
basically the answer to the question the user asked. For example, in this chapter, you
learn the basic structure of a SELECT statement and how to display only certain fields
from a table. In Chapter 8, you learn how to modify the SELECT statement to display
only certain rows.

The syntax for an SQL statement is the basic structure, or rules, required to execute
the statement. Figure 2-5 shows the syntax for the SELECT statement.

FIGURE 2-5 Syntax for the SELECT statement

The capitalized words (SELECT, FROM, WHERE, and so forth) in Figure 2-5 are
keywords (words with a predefined meaning in Oracle 12c). Each section in the
figure that begins with a keyword is referred to as a clause (SELECT clause, FROM
clause, WHERE clause, and so on). Note these important points about SELECT
statements:

• The only clauses required for the SELECT statement are SELECT and FROM,
so they are the only clauses in Figure 2-5 discussed in this chapter.

• Square brackets indicate optional portions of the statement. (Optional
clauses are discussed in subsequent chapters.)

• SQL statements can be entered over several lines (as shown in Figure 2-5) or
on one line. Most SQL statements are entered with each clause on a separate
line to improve readability and make editing easier. As various SELECT
commands are explained in this chapter, you’ll see variations on spacing,
number of lines, and capitalization. These variations are pointed out as you
encounter them in this textbook.

• An SQL statement ends with a semicolon.

Selecting All Data in a Table
To have the SELECT statement return all data from a specific table, type an asterisk (*)
after SELECT, as shown in Figure 2-6. This statement retrieves all data stored in the
CUSTOMERS table.

31

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-6 Command to select all data in a table

The asterisk (*) is a symbol that instructs Oracle 12c to include all columns in the
table. This symbol can be used only in the SELECT clause of a SELECT statement. If you
need to view or display all columns in a table, typing an asterisk is much simpler than
typing the name of each column.

N O T E

As mentioned, all execution output in this textbook is shown in the SQL Developer interface, which is
displayed in a table format by default for SELECT statements. Your output format will be different if
you’re using SQL*Plus because this client tool displays output in a text format. Appendix B includes
sample output from both interfaces.

N O T E

Did you notice the values of “(null)” in some rows of the Referred column? This value is displayed as a
blank if you’re using the SQL*Plus client tool. A NULL value indicates the field is empty. NULL values
are discussed later in this chapter.

When looking at the results of the SELECT statement, pay attention to the column head-
ings. Depending on the tool being used and the options set, some column headings might be

32

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

truncated. Keep in mind that when you refer to a column in any SQL statement, you still
need to specify the entire column name. Because of the possibility of the name being truncated,
be sure you don’t depend on the displayed column headings when entering column names in
SQL statements.

T I P

You can view the exact name of each column by entering the command DESCRIBE tablename.

Selecting One Column from a Table
In the example in Figure 2-6, an asterisk was used to specify displaying all columns in
the table. If the table contains a large number of fields, the results might look cluttered, or
maybe the table contains sensitive data you don’t want other users to see. In these
situations, you can instruct Oracle 12c to return only specific columns in the results.
Choosing specific columns in a SELECT statement is called projection. You can select one
column—or as many as all columns—contained in the table.

For example, suppose you want to view the titles of all books in the inventory. The
data about books is stored in the BOOKS table, and the name of the column you need is
Title. As shown in Figure 2-7, you can list the column name after the SELECT keyword.
Type the statement shown in Figure 2-7 to list all the book titles.

FIGURE 2-7 Command to select a single column

33

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

If you get an error message rather than the query results, you might have made a typing error.
The error message should display the line in which the error occurred. An asterisk beneath the line
serves as an indicator of the error; however, it’s not always the exact cause. If the error message
indicates that the error is in the second line of the statement, you might have entered BOOK
instead of BOOKS. Simply retype the statement with the correction, and it should return the correct
results.

The results display only the specified field, which is Title. You might want to practice
some variations of the same SELECT statement. Try entering the examples shown in
Figure 2-8, one at a time, and notice that the results are the same.

FIGURE 2-8 The SELECT statement can be entered on one or more lines

As shown in these examples, the statement can be entered on one or more lines. Also,
notice that keywords, table names, and column names are not case sensitive. To
distinguish between keywords and other parts of the SELECT statement, the keywords are
capitalized in examples. Keep in mind that this is not a requirement of Oracle 12c; it’s
simply a convention used to improve readability.

Selecting Multiple Columns from a Table
In most cases, displaying only one column from a table isn’t enough output on which to
base decisions. If you want to know the date each book was published, you could retrieve
all the fields from the BOOKS table and manually extract the fields you need. As an
alternative, you could issue one SELECT statement to retrieve the Title field, another to
retrieve the Publication Date (Pubdate) field, and then match up the two results. However,
issuing a query requesting both the title and the publication date for each book is more
practical, as shown in Figure 2-9.

34

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-9 Command to select multiple columns from a table

When specifying more than one column in the SELECT clause, commas should
separate the columns listed. Although a space has been entered after the comma, it’s not
part of the SELECT statement’s required syntax. The space simply improves the
statement’s readability.

When looking at the results of this query, notice the order in which columns are listed
in the output: Title is listed first, followed by Pubdate. Oracle 12c sequences columns in
the display in the same order the user sequences them in the SELECT statement. To
change the order and display the Pubdate column first, simply reverse the order of
columns listed in the SELECT clause, as shown in Figure 2-10.

35

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-10 Reversed column sequence in the SELECT clause

O P E R A T I O N S I N T H E S E L E C T S T A T E M E N T

Now that you’ve selected columns from tables, take a look at some other operations. In
this section, you learn how to use column aliases, use arithmetic operations, and
eliminate duplicate output.

Using Column Aliases
Sometimes a column name is a vague indicator of the data that’s displayed. To better
describe the data displayed in the output, you can substitute a column alias
for the column name in query results. For example, if you’re displaying a list
of all books stored in the database, you might want the column heading to
read “Title of Book.” To instruct the software to use a column alias, simply list
the column alias next to the column name in the SELECT clause. Figure 2-11
shows the title and category for each book in the BOOKS table, but it

36

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

adds a column alias for the title. The optional keyword of AS has been included to
distinguish between the column name and the column alias.

FIGURE 2-11 Using a column alias

You need to keep some guidelines in mind when using a column alias. If the column
alias contains spaces or special symbols, or if you don’t want it to appear in all uppercase
letters, you must enclose it in quotation marks (" "). By default, column headings shown
in query results are capitalized. Using quotation marks overrides this default setting.
However, notice that the letter case of data displayed in the column isn’t altered.

N O T E

As shown in the SELECT statement, you must separate the list of field names with commas. If you
forget a comma, Oracle 12c interprets the subsequent field name as a column alias, and you don’t get
the results you intended.

37

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the column alias consists of only one word without special symbols, it doesn’t need
to be enclosed in quotation marks. In Figure 2-12, the Retail field is assigned the column
alias of Price. Also, note that the optional keyword AS used in Figure 2-11 isn’t included.
Because a comma doesn’t separate the words retail and price, Oracle 12c assumes that
Price is the column alias for the Retail column.

FIGURE 2-12 Using a column alias without the AS keyword

N O T E

Many development shops consistently use quotation marks or the AS keyword with column aliases to
improve code readability.

As you look at the results in Figure 2-12, notice the alignment of data values in columns:

• By default, the data for text, or character, fields is left-aligned.
• Data for numeric fields is right-aligned.

38

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• Oracle 12c doesn’t display insignificant zeros (zeros that don’t affect
the value of the number being displayed). The retail price of the book
Hand-cranked Computers is $25.00. Because the zeros in the two decimal
positions are insignificant, Oracle 12c doesn’t display them. To force
Oracle 12c to display a specific number of decimal positions or use special
symbols (such as dollar signs), formatting codes, discussed in Chapter 10,
are required.

Using Arithmetic Operations
Simple arithmetic operations, such as multiplication (*), division (/), addition (þ), and
subtraction (−), can be used in the SELECT clause of a query. Keep in mind that Oracle
12c adheres to the standard order of operations:

1. Moving from left to right in the arithmetic equation, any required
multiplication and division operations are solved first.

2. Addition and subtraction operations are solved after multiplication and
division, again moving from left to right in the equation.

To override this order of operations, you can use parentheses to enclose the
portion of the equation that should be calculated first. For example, you might
need to calculate a book’s profit margin by subtracting the retail price from
the cost and dividing the result by the cost. This operation could be written as
retail−cost/cost. However, the division operation is solved first, which is cost/cost,
so the result is always subtracting the number one from the retail price. To force
the subtraction to occur before the division, add parentheses as shown:
(retail−cost)/cost.

N O T E

Oracle 12c doesn’t support an exponent operator in the SELECT statement. For example, in
some programs, you can enter number^3 to raise a number to the power of three. (Raising a
number to the power of three means multiplying the number by itself three times; for example, 53

equals 5 * 5 * 5.) With Oracle 12c, if you need to use an exponential operation in the SELECT
statement, break it down into its multiplication equivalent or use the POWER function, introduced
in Chapter 10.

Next, you want to determine the profit generated by the sale of each book. The
BOOKS table contains two fields you can use to derive the profit: Cost and Retail.
A book’s profit is the difference (subtraction) between the amount the bookstore
paid for the book (cost) and the selling price of the book (retail). To clarify the
column’s contents, assign the column alias “profit” to the calculated field, as
shown in Figure 2-13.

39

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-13 Using a column alias for an arithmetic expression

NULL Values
If no value is entered for a column in a row of data, the value is considered NULL,
indicating an absence of data. Query all the data in the BOOKS table, as shown in
Figure 2-14, and notice that some rows have a NULL value for the Discount amount.
As mentioned, this value is shown as “(null)” in SQL Developer or simply a blank in
SQL*Plus.

40

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-14 NULL values in the Discount column

NULL values can lead to undesirable results in operations. For example, what if
you need to determine a book’s current sale price by subtracting the Discount
column amount from the Retail column amount? This operation seems simple
enough, using a subtraction operation as shown in Figure 2-15. When you inspect
the results, however, you discover that each row containing a NULL value for the
Discount column shows a calculated sale price of NULL. If any value in an arithmetic
operation is NULL, the result is NULL. To perform the operation successfully, you can
use functions to substitute a value, such as 0, for a NULL value. Functions are covered
in Chapter 10.

41

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-15 Arithmetic operations with NULL values

Using DISTINCT and UNIQUE
Suppose you want to know the states in which your customers live so that you can focus a
marketing campaign on a particular region of the country. You want a list to identify only
the states, not customer names, addresses, and so on. One option is to select the State
column from the CUSTOMERS table. You’ll notice quickly, however, that some states are
listed more than once, if more than one customer lives in a state. If you’re working with
only 20 records, simply crossing out duplicate states on a printout isn’t a problem.
However, if you’re dealing with thousands of records, this task is cumbersome.

To eliminate duplicate listings, you can use the DISTINCT option in your SELECT
statement. For example, suppose you have five customers living in Texas (TX). Without
the DISTINCT option, TX appears in your results five times. If you include the
DISTINCT option, TX appears only once. To use the DISTINCT option, use the keyword
DISTINCT between the SELECT keyword and the first column of the column list, as
shown in Figure 2-16.

42

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-16 List of unduplicated states for customers

In Figure 2-16, the database was queried to determine the states in which customers
live. Although there are 20 customers in the CUSTOMERS table, they live in only 12
states. You could use this information to determine where you’re most likely to attract
more customers or to identify geographical areas that aren’t responding to a nationwide
marketing effort.

The DISTINCT keyword is applied to all columns listed in the SELECT clause, even
though it’s stated directly after the SELECT keyword. In the example in Figure 2-16, if
you had also included CITY in the SELECT clause, each different combination of city
and state would have been listed only once in the output. If no two customers in the
database live in the same city and state, you would still have 20 rows of output—one row
for each customer. However, two customers live in Burbank, CA. Notice that the output
in Figure 2-17 shows only 19 rows because Burbank, CA is listed only once as a result of
the DISTINCT operation.

43

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 2-17 Unduplicated list of cities for customers

N O T E

You can also use the UNIQUE keyword to eliminate duplicates. It works the same way as the DISTINCT
keyword. The following returns the same results as the example in Figure 2-16:

SELECT UNIQUE state

FROM customers;

Using Concatenation
In previous examples, if an output list contained more than one field, each field was placed
in a separate column. In some situations, however, you might want the contents of each
field to be displayed next to each other, without much blank space. For example, for a list

44

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of customer names, you might prefer to have them combined so that they appear as a
single column rather than separate first name and last name columns.

Combining the contents of two or more columns is known as concatenation. To
instruct Oracle 12c to concatenate the output of a query, use two vertical bars, or pipes
(| |), between the fields you’re combining. On a keyboard, this symbol is located above the
backslash (\). In the example in Figure 2-18, the goal is to have the customer’s last name
listed immediately after the first name instead of in a separate column. As you look at the
results in this figure, the first thing you should notice is that each customer’s first name
and last name run together, and it’s difficult to tell where one name ends and the other
begins. To make the results more readable, you need to include a blank space between the
First-name and Lastname fields.

FIGURE 2-18 Concatenation of two columns

45

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To have Oracle 12c insert a blank space, you must concatenate the Firstname and
Lastname fields with a string literal. A string literal instructs Oracle 12c to interpret the
characters you have entered “literally,” not to consider them a keyword or command.
A string literal must be enclosed in single quotation marks (0 0). When you use a string
literal, the character or characters you type inside the single quotation marks should
appear in the output exactly as you have typed them. In this instance, the string literal is a
blank space. Figure 2-19 shows what the customer’s list looks like after including a blank
space in the output.

FIGURE 2-19 Using a string literal in concatenation

Although you now have a readable list of all customer names, the display has an unusual
column heading. The column heading shown in the results is exactly what you entered for

46

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the field list—including the concatenation symbols and the string literal. If this list is for
management or a person who isn’t familiar with Oracle 12c, you might want to give your
output a more professional appearance. To do this, you can use a column alias, as you did
previously. The query in Figure 2-20 substitutes Customer Name as the column heading in
the results.

FIGURE 2-20 Using a column alias for concatenated values

T I P

If you get an error message, make sure the blank space is in single quotation marks and the column
alias is in double quotation marks.

47

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can also use literals to include any characters needed to produce output in a
certain format. For example, you need a customer listing in the following format:
Customer# : Lastname, Firstname. Notice that the semicolon and comma are provided by
using literals in the query shown in Figure 2-21.

FIGURE 2-21 Formatting concatenated strings with literals

48

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• A basic query in Oracle 12c SQL includes the SELECT and FROM clauses, the
only mandatory clauses in a SELECT statement.

• To view all columns in a table, use an asterisk (*) or list all the column names in
the SELECT clause.

• To display a specific column or set of columns, list the column names in the
SELECT clause (in the order in which you want them to appear).

• When listing column names in the SELECT clause, a comma must separate
column names.

• A column alias can be used to clarify the contents of a particular column. If the
alias contains spaces or special symbols, or if you want to display the column with
any lowercase letters, you must enclose the column alias in quotation marks (" ").

• To specify which table contains the columns you want, you must list the table
name after the keyword FROM.

• Basic arithmetic operations can be performed in the SELECT clause.
• NULL values indicate an absence of a value and might have an undesirable effect

on arithmetic operations.
• To remove duplicate listings, include the DISTINCT or UNIQUE keyword.
• A string literal is a set of characters enclosed in single quotation marks (''); it’s

interpreted as is, not treated as a keyword or command.
• Use vertical bars (| |) to combine, or concatenate, fields, literals, and other data.

Chapter 2 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Element Description Example

SELECT clause Identify the columns for retrieval in a
SELECT command

SELECT title

FROM clause Identify the table containing selected
columns

FROM books

SELECT statement View columns in a table SELECT title
FROM books;

, Separate column names in a list
when retrieving multiple columns
from a table

SELECT title, pubdate
FROM books;

* Return all data in a table when used
in a SELECT clause

SELECT *
FROM books;

49

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. What is a data dictionary?

2. What are the two required clauses for a SELECT statement?

3. What is the purpose of the SELECT statement?

4. What does an asterisk (*) in the SELECT clause of a SELECT statement represent?

5. What is the purpose of a column alias?

6. How do you indicate that a column alias should be used?

Element Description Example

AS Indicate a column alias to change a
column heading in output

SELECT title AS
titles, pubdate

FROM books;

Create a column alias to change a
column heading in output without
using AS

SELECT title titles,
pubdate

FROM books;

" " Preserve spaces, symbols, or letter
case in an output column alias

SELECT title AS "Book
Name"

FROM books;

* multiplication
/ division
+ addition
- subtraction

Solve arithmetic operations (Oracle
12c first solves * and /, then
solves þ and �, unless parentheses
are used)

SELECT title,
retail-cost profit

FROM books;

DISTINCT Eliminate duplicates in a list SELECT DISTINCT state
FROM customers;

UNIQUE Eliminate duplicates in a list SELECT UNIQUE state
FROM customers;

| | (concatenation) Combine display of content from
multiple columns into a single
column

SELECT city || state
FROM customers;

'' (string literal) Indicate the exact set of charac-
ters, including spaces, to be
displayed

SELECT city ||''|| state
FROM customers;

DESCRIBE Display the structure of a table DESCRIBE books

USER_TABLES List the name of all tables in the
current account

SELECT table_name
FROM user_tables;

Syntax Guide (continued)

50

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. When is it appropriate to use a column alias?

8. What are the guidelines to keep in mind when using a column alias?

9. How can you concatenate columns in a query?

10. What is a NULL value?

Multiple Choice

To determine the exact name of the fields used in tables for these questions, refer to the tables
in the JustLee Books database, or use the DESCRIBE tablename command to view the table’s
structure.

1. Which of the following SELECT statements displays a list of customer names from the
CUSTOMERS table?

a. SELECT customer names FROM customers;

b. SELECT "Names" FROM customers;

c. SELECT firstname, lastname FROM customers;

d. SELECT firstname, lastname, FROM customers;

e. SELECT firstname, lastname, "Customer Names" FROM customers;

2. Which clause is required in a SELECT statement?

a. WHERE

b. ORDER BY

c. GROUP BY

d. FROM

e. all of the above

3. Which of the following is not a valid SELECT statement?

a. SELECT lastname, firstname FROM customers;

b. SELECT * FROM orders;

c. Select FirstName NAME from CUSTOMERS;

d. SELECT lastname Last Name FROM customers;

4. Which of the following symbols represents concatenation?

a. *

b. ||

c. []

d. ''

5. Which of the following SELECT statements returns all fields in the ORDERS table?

a. SELECT customer#, order#, orderdate, shipped, address FROM orders;

b. SELECT * FROM orders;

c. SELECT ? FROM orders;

d. SELECT ALL FROM orders;

51

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Which of the following symbols is used for a column alias containing spaces?

a. ''

b. ||

c. " "

d. //

7. Which of the following is a valid SELECT statement?

a. SELECT TITLES * TITLE! FROM BOOKS;

b. SELECT “customer#” FROM books;

c. SELECT title AS “Book Title” from books;

d. all of the above

8. Which of the following symbols is used in a SELECT clause to display all columns from a table?

a. /

b. &

c. *

d. "

9. Which of the following is not a valid SELECT statement?

a. SELECT cost-retail FROM books;

b. SELECT retail+cost FROM books;

c. SELECT retail * retail * retail FROM books;

d. SELECT retail^3 from books;

10. When must a comma be used in the SELECT clause of a query?

a. when a field name is followed by a column alias

b. to separate the SELECT clause and the FROM clause when only one field is selected

c. It’s never used in the SELECT clause.

d. when listing more than one field name and the fields aren’t concatenated

e. when an arithmetic expression is included in the SELECT clause

11. Which of the following commands displays a listing of the category for each book in the
BOOKS table?

a. SELECT title books, category FROM books;

b. SELECT title, books, and category FROM books;

c. SELECT title, cat FROM books;

d. SELECT books, | | category "Categories" FROM books;

12. Which clause is not required in a SELECT statement?

a. SELECT

b. FROM

c. WHERE

d. All of the above clauses are required.

52

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. Which of the following lines of the SELECT statement contains an error?

1 SELECT title, isbn,

2 Pubdate "Date of Publication"

3 FROM books;

a. line 1

b. line 2

c. line 3

d. There are no errors.

14. Which of the following lines of the SELECT statement contains an error?

1 SELECT ISBN,

2 retail-cost

3 FROM books;

a. line 1

b. line 2

c. line 3

d. There are no errors.

15. Which of the following lines of the SELECT statement contains an error?

1 SELECT title, cost,

2 cost*2

3 'With 200% Markup'

4 FROM books;

a. line 1

b. line 2

c. line 3

d. line 4

e. There are no errors.

16. Which of the following lines of the SELECT statement contains an error?

1 SELECT name, contact,

2 "Person to Call", phone

3 FROM publisher;

a. line 1

b. line 2

c. line 3

d. There are no errors.

53

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17. Which of the following lines of the SELECT statement contains an error?

1 SELECT ISBN, || ' is the ISBN for the book named ' ||

2 title

3 FROM books;

a. line 1

b. line 2

c. line 3

d. There are no errors.

18. Which of the following lines of the SELECT statement contains an error?

1 SELECT title, category

2 FORM books;

a. line 1

b. line 2

c. There are no errors.

19. Which of the following lines of the SELECT statement contains an error?

1 SELECT name, contact

2 "Person to Call", phone

3 FROM publisher;

a. line 1

b. line 2

c. line 3

d. There are no errors.

20. Which of the following lines of the SELECT statement contains an error?

1 SELECT *

2 FROM publishers;

a. line 1

b. line 2

c. There are no errors.

Hands-On Assignments

To determine the exact name of fields used in the tables for these exercises, refer to the tables
in the JustLee Books database, or use the DESCRIBE tablename command to view the table’s
structure.

1. Display a list of all data contained in the BOOKS table.

2. List the title only of all books available in inventory, using the BOOKS table.

3. List the title and publication date for each book in the BOOKS table. Use the column
heading “Publication Date” for the Pubdate field.

54

Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. List the customer number for each customer in the CUSTOMERS table, along with the city
and state in which the customer lives.

5. Create a list containing the publisher’s name, the person usually contacted, and the
publisher’s telephone number. Rename the contact column “Contact Person” in the
displayed results. (Hint: Use the PUBLISHER table.)

6. Determine which categories are represented in the current book inventory. List each
category only once.

7. List the customer number from the ORDERS table for each customer who has placed an
order with the bookstore. List each customer number only once.

8. Create a list of each book title stored in the BOOKS table and the category in which each
book belongs. Reverse the sequence of the columns so that the category of each book is
listed first.

9. Create a list of authors that displays the last name followed by the first name for each
author. The last names and first names should be separated by a comma and a blank
space.

10. List all information for each order item. Include an item total, which can be calculated by
multiplying the Quantity and Paideach columns. Use a column alias for the calculated value
to show the heading “Item Total” in the output.

Advanced Challenge

The management of JustLee Books has submitted two requests. The first is for a mailing list of
all customers stored in the CUSTOMERS table. The second is for a list of the percentage of
profit generated by each book in the BOOKS table. The requests are as follows:

1 Create a mailing list from the CUSTOMERS table. The mailing list should display the
name, address, city, state, and zip code for each customer. Each customer’s name
should be listed in order of last name followed by first name, separated with a comma,
and have the column header “Name.” The city and state should be listed as one column
of output, with the values separated by a comma and the column header “Location.”

2 To determine the percentage of profit for a particular item, subtract the item’s cost from
the retail price to calculate the dollar amount of profit, and then divide the profit by the
item’s cost. The solution is then multiplied by 100 to determine the profit percentage for
each book. Use a SELECT statement to display each book’s title and percentage of
profit. For the column displaying the percentage markup, use “Profit %” as the column
heading.

Required: Determine the SQL statements needed to perform the two required tasks. Each
statement should be tested to ensure its validity. Submit documentation of the commands and
their results, using the format specified by your instructor.

Case Study: City Jail

The case study resumes in Chapter 3.

55

Basic SQL SELECT Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R3
TABLE CREATION AND
MANAGEMENT

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Identify the table name and structure

• Create a new table with the CREATE TABLE command

• Use a subquery to create a new table

• Add a column to an existing table

• Modify the definition of a column in an existing table

• Delete a column from an existing table

• Mark a column as unused and then delete it later

• Rename a table

• Truncate a table

• Drop a table

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

Since joining JustLee Books as a database specialist, you’re able to query the existing
database; however, now you need to address some requested database modifications. First, the
management of JustLee Books is implementing a sales commission program for all account
managers who have been employed by the company for more than six months. Account
managers will receive a commission for each order from customers in the geographical region
they supervise. This program requires adding a new table for account manager data. Second,
data extracts are needed to enable the Marketing Department to perform customer analyses.
Third, a number of modifications are needed to address current data needs. For example, a
new column is needed in the PUBLISHER table to store a service rating indicator.

Chapters 3 through 5 explain the SQL commands used to create and modify tables,
assign constraints on columns, add data to tables, and edit existing data. This chapter
addresses methods for creating tables and modifying existing tables. Commands used to
create or modify database tables are called data definition language (DDL) commands.
These commands are basically SQL commands used specifically to create or modify
database objects. A database object is a defined, self-contained structure in Oracle 12c.
In this chapter, you create database tables, which are considered database objects.
Later, in Chapter 6, you learn how to create and modify other types of database objects.
Table 3-1 provides an overview of this chapter’s topics.

TABLE 3-1 Overview of Chapter Contents

Commands and Clauses Description

Creating Tables

CREATE TABLE Creates a new table in the database. The user
names the columns and identifies the type of data
to be stored. To view a table, use the SQL*PLUS
command DESCRIBE.

CREATE TABLE ... AS Creates a table from existing database
tables, using the AS clause and
subqueries.

Modifying Tables

ALTER TABLE ... ADD Adds a column to a table.

ALTER TABLE ... MODIFY Changes a column size, datatype, or
default value.

ALTER TABLE ... DROP COLUMN Deletes one column from a table.

ALTER TABLE ... SET UNUSED
or
SET UNUSED COLUMN

Marks a column for deletion at a later time.

58

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T A B L E D E S I G N

Before issuing an SQL command to create a table, you must complete the entity design, as
discussed in Chapter 1. For each entity, you must choose the table’s name and determine
its structure—that is, what columns to include in the table. In addition, you need to
determine the width of any character or numeric columns.

Take a look at these requirements in more depth. Oracle 12c has the following rules
for naming both tables and columns:

• The names of tables and columns can be up to 30 characters and must begin
with a letter. These limitations apply only to a table or column name, not to
data in a column.

• The names of tables and columns can’t contain any blank spaces.
• Numbers, the underscore symbol (_), and the number sign (#) are allowed in

table and column names.
• Each table owned by a user should have a unique table name, and the

column names in each table should be unique.
• Oracle 12c “reserved words,” such as SELECT, DISTINCT, CHAR, and

NUMBER, can’t be used for table or column names.

TABLE 3-1 Overview of Chapter Contents (continued)

Commands and Clauses Description

Modifying Tables

DROP UNUSED COLUMNS Completes the deletion of a column previously
marked with SET UNUSED.

RENAME ... TO Changes a table name.

TRUNCATE TABLE Deletes all table rows, but the table name and
column structure remain.

Deleting Tables

DROP TABLE Removes an entire table from the Oracle 12c
database.

PURGE TABLE Permanently deletes a table in the recycle bin.

Recovering Tables

FLASHBACK TABLE ... TO BEFORE DROP Recovers a dropped table if PURGE option not
used when table dropped.

DATABASE PREPARATION

This chapter assumes you have created the initial JustLee Books database as instructed in Chapter 2.

59

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Because the new table is to contain data about account managers, the table name is
ACCTMANAGER. The ACCTMANAGER table needs to contain each account manager’s
name, employment date, and assigned region as well as an ID code to act as the table’s
primary key and uniquely identify each account manager. Although having two account
managers with the same name is unlikely, the ID code can reduce data entry errors because
users need to type only a short code instead of a manager’s entire name in SQL commands.

N O T E

The ID column is included in the ACCTMANAGER table to serve as the table’s primary key. However,
the PRIMARY KEY constraint isn’t defined in this chapter. Chapter 4 expands on table creation
capabilities by introducing the constraints that can be defined for a table.

Now that the table’s contents have been determined, the columns can be designed.
When you create a table in Oracle 12c, you must define each column. Before you can
create the columns, however, you must do the following:

• Choose a name for each column.
• Determine the type of data each column stores.
• Determine (in some cases) the column’s maximum width.

You need to identify the type of data to be stored in each column so that you can assign
an appropriate datatype for each column. Table 3-2 lists the datatypes used in this chapter.

TABLE 3-2 Oracle 12c Datatypes

Datatype Description

VARCGHAR2(n) Variable-length character data, and the n represents the column’s maximum
length. The maximum size is 4000 bytes. There’s no default size for this datatype;
a minimum value must be specified. Example: VARCGHAR2(9) can contain up to
nine letters, numbers, or symbols.

CHAR(n) Fixed-length character column, and the n represents the column’s length. The
default size is 1, and the maximum size is 2000. Example: CHAR(9) can contain
nine letters, numbers, or symbols. However, if fewer than nine are entered,
spaces are added to the right to force the data to reach a length of nine.

NUMBER(p, s) Numeric column. The p indicates precision, the total number of digits to the left
and right of the decimal position, to a maximum of 38 digits; the s, or scale,
indicates the number of positions to the right of the decimal. Example: NUMBER
(7, 2) can store a numeric value up to 99999.99. If precision or scale isn’t
specified, the column defaults to a precision of 38 digits.

DATE Stores date and time between January 1, 4712 BC and December 31, 9999 AD.
Seven bytes are allocated to the column to store the century, year, month, day,
hour, minute, and second of a date. Oracle 12c displays the date in the format
DD-MON-YY. Other aspects of a date can be displayed by using the TO_CHAR
format. Oracle 12c defines the field width as seven bytes.

60

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Oracle currently has two variable-length character datatypes: VARCHAR and VARCHAR2. However,
Oracle recommends using VARCHAR2 rather than VARCHAR, so VARCHAR2 is used throughout this
textbook. Oracle’s SQL reference states “The VARCHAR datatype is currently synonymous with the
VARCHAR2 datatype. Oracle recommends that you use VARCHAR2 rather than VARCHAR. In the
future, VARCHAR might be defined as a separate datatype used for variable-length character strings
compared with different comparison semantics.”

T I P

Many additional datatypes are available, including BINARY_FLOAT, BINARY_DOUBLE, INTEGER,
LONG, CLOB, RAW(n), LONG RAW, BLOB, BFILE, TIMESTAMP, and INTERVAL. You can explore
details on all datatypes in the SQL Language Reference available at the Oracle Technology Network
(OTN) Web site.

A datatype identifies the type of data Oracle 12c is expected to store in a column.
Identifying the type of data helps you verify that you input the correct data and allows
you to manipulate data in ways specific to that datatype. For example, you need to
calculate the difference in number of days between two date values, such as the
Orderdate and Shipdate columns from the ORDERS table. To accomplish this task, the
system needs to be able to associate the date values to a calendar. If the columns have a
DATE datatype, Oracle 12c associates the values to calendar days automatically.

Extended datatype is a new feature introduced with Oracle 12c which enables the
storage of additional data bytes in specific datatypes such as VARCHAR2. This feature must
be enabled by setting the MAX_STRING_SIZE parameter to a value of EXTENDED, which is
typically performed by an Oracle system administrator. If this feature is enabled, a
VARCHAR2 datatype may store up to 32,767 bytes. Even though this offers a much larger
storage option, you need to consider if the column needs to be indexed as a typical index
will not operate properly on extended datatype columns. Oracle 12c documentation
provides some options if you need an extended data column that is indexed.

Now return to creating the new ACCTMANAGER table. You need to include eight
columns. The first column, which uniquely identifies each account manager, is named
AmID. The ID code assigned to each account manager consists of the first letter of a
manager’s last name, followed by a three-digit number. Because the column’s data consists
of both letters and numbers, it must be defined to store the datatype CHAR and have a
width of four. The CHAR datatype should be used only when the length of values stored in
the column is consistent. In this case, every AmID has a length of four. Oracle 12c pads a
CHAR column to the specified length if an entry doesn’t fill the column’s entire width.
This padding can result in wasted storage space if most values Oracle 12c stores must
include blank spaces to force a column’s contents to a specified length. If character data
stored in a column won’t be a consistent length, the VARCHAR2 datatype should be used.
The VARCHAR2 datatype uses only the physical space required to hold the entered value,
and storage space is conserved because no padding takes place.

12c

61

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Why not just always use the VARCHAR2 datatype and avoid using CHAR? There’s a
slight processing overhead in managing a variable-length field. Therefore, using CHAR
when it applies has the advantage of reducing processing overhead. Many people in the
industry use both datatypes; however, it’s still a topic of debate.

T I P

JustLee Books decided to use the AmID code consisting of characters and digits because it’s already
being used in the payroll system, and the company wants to integrate all the systems. When you’re
trying to determine an appropriate primary key value, considering codes already in use is important. If
JustLee Books didn’t have any existing values to identify account managers, a system-generated value
would most likely be used. Typically, these columns are numeric to allow using sequences to populate
the column. Sequences are covered in Chapter 6.

The second and third columns of the ACCTMANAGER table are used to store each
account manager’s first and last name. If you store first names and last names in separate
columns, you can perform simple searches on each part of a manager’s name. Because
each account manager’s name consists of characters, these columns are assigned the
datatype VARCHAR2. Name values vary greatly in length. Therefore, the variable-length
datatype is more appropriate than CHAR.

Generally, you define the width so that it can hold the largest value that could ever be
entered in that column. However, an account manager might be hired whose first or last
name is extremely long. Increasing a column’s width at a later time is easy. Therefore, the
assumption is that a column width of 12 characters is enough to store the names of
current account managers. The columns are named Amfirst and Amlast.

N O T E

The actual names of account managers are provided in Chapter 5.

The fourth column is used to store each account manager’s employment date.
Because the datatype is DATE, you don’t have to worry about the column length—it’s
predetermined by Oracle 12c. All that remains is choosing a name for the column. In this
case, Amedate, for “account manager employment date,” is appropriate.

The next three columns address account manager earnings: salary (Amsal),
commission (Amcomm), and total earnings (Amearn). All these columns contain
monetary values, so a NUMBER datatype with two decimal places is suitable. The Amearn
column is calculated by adding the Amsal and Amcomm column values. It’s a virtual
column that generates a value automatically based on other column values in the table.
The AS keyword is followed by the expression to define the virtual column in the table
creation statement. The virtual column’s value is derived when it’s queried; it’s not
physically stored in the row data.

The eighth and final column for the ACCTMANAGER table is the region to which the
account manager is assigned. The United States is divided into eight geographical regions,

62

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

each identified by a two-letter code (such as NE for the Northeast region). The column
name is Region, and it’s defined as a CHAR datatype with a width of two characters. The
VARCHAR2 datatype could also be used; however, because the values stored in the
Region column always consist of two characters, the CHAR datatype is appropriate.

T A B L E C R E A T I O N

Figure 3-1 shows the basic syntax of the SQL command to create a table in Oracle 12c.

CREATE TABLE [schema.] tablename
 (columnname datatype [DEFAULT value]
 [, columnname datatype [DEFAULT value]]);

FIGURE 3-1 CREATE TABLE syntax

The keywords CREATE TABLE instruct Oracle 12c to create a table. Optionally, a
schema can be included to indicate who “owns” the table. For example, if the person
creating the table is also the person who owns the table, the schema can be omitted, and
the current username is assumed by default. On the other hand, if you’re creating the
ACCTMANAGER table for someone with the username DRAKE, the schema and table
name are entered as DRAKE.ACCTMANAGER to inform Oracle 12c that the
ACCTMANAGER table belongs to DRAKE’S schema, not yours. A database object’s owner
has the right to perform certain operations on that object. With a table, the only way
another database user can query or manipulate data in the table is to be given permission
from the table’s owner or the database administrator. The table name, of course, is the
name used to identify the table being created.

N O T E

Many database objects, such as tables, supporting an application need to be shared by many users. In
this case, users must be granted permission to access objects in the schema in which they reside. Also,
to create a table in a schema other than your own, you must be granted permission to use the CREATE
TABLE command for that schema. Chapter 7 explains the different privileges in Oracle 12c.

Defining Columns
After entering the table name, you define the columns to be included in the table. A table
can contain a maximum of 1000 columns. The CREATE TABLE syntax requires enclosing
the column list in parentheses. If the table contains more than one column, the name,
datatype, and width (if applicable) are listed for the first column before the next column is
defined. Commas separate columns in the list.

The CREATE TABLE command also allows assigning a default value to a column. The
default value is the one Oracle 12c stores automatically if the user makes no entry in the

63

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

column. For example, imagine users entering order data. Rather than have the user spend
time entering the current date as the order date, have the system do it automatically by
setting the DEFAULT value to the system’s current date.

Using the syntax in Figure 3-1, the SQL command in Figure 3-2 shows creating the
ACCTMANAGER table.

FIGURE 3-2 The creation of the ACCTMANAGER table

N O T E

In the SQL Developer tool, you can use the Execute Statement or Run Script button to execute the DDL
statements in this chapter. Using the Execute Statement button generates a command completion
message at the bottom left of the SQL Developer window. If an error occurs, a popup window is
displayed. Using the Run Script button displays all messages in the Script Output tab below the
statement area. The figures in this textbook show SELECT statements using the Execute Statement
button and all other types of statements using the Run Script button.

In the command shown in Figure 3-2, the table name is ACCTMANAGER. It’s entered
in lowercase letters to distinguish it from the CREATE TABLE keywords. Oracle 12c SQL
commands aren’t case sensitive; however, for clarity in this textbook all keywords are in
uppercase and all user-supplied values are in lowercase. Because the user who creates the
table is also the table owner, the schema has been omitted.

64

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The eight columns to be created are listed next in parentheses. Each column is
defined on a separate line to improve readability, but doing so isn’t an Oracle 12c
requirement. Notice the definition for the Amedate column; it has been assigned a default
value of SYSDATE. This value instructs Oracle 12c to insert the current date (according to
the Oracle 12c server) if the user enters a new account manager without including the
person’s date of employment. Of course, this default value is beneficial only if the account
manager’s record is created on the same date the person is hired; otherwise, the date must
be entered, and the DEFAULT setting is ignored.

N O T E

A user can’t have two tables with the same name. If you attempt to create a table with the same name
as another table in your schema, Oracle 12c returns an ORA-00955 error message. Similarly, if you
create a table and then want to create another table with the same name, you must first delete the
existing table with the command DROP TABLE tablename. (The DROP TABLE command is shown later
in this chapter.)

Notice that after the command has been executed, Oracle 12c returns a message
indicating the table was created successfully. The message doesn’t contain any reference
to rows being created. At this point, the table doesn’t contain any data; only the table
structure has been created. (In other words, the table has been defined in terms of a table
name and the type of data it will contain.) The data, or rows, must be entered in the table
as a separate step with the INSERT command. You enter all the data for account managers
in Chapter 5.

T I P

If you get an error message (such as an ORA-00922 error message) when executing the CREATE
TABLE command, it could be a result of 1) not including a closing parenthesis to end the column list, or
2) not separating each column definition with a comma. If an error message is displayed stating that you
don’t have sufficient privileges, ask the database administrator to grant you the CREATE TABLE
privilege.

Viewing a List of Tables: USER_TABLES
Recall that you can query the data dictionary to verify all existing tables in your schema.
The USER_TABLES data dictionary object maintains information on all your tables.
Figure 3-3 shows querying the data dictionary to generate a list of table names. Imagine
how important this query can be when you start a new job and need to explore an existing
database!

65

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-3 Listing names of all tables

N O T E

Your list should show all the tables created previously for the JustLee Books database. You might see
additional tables named SALGRADE, BONUS, EMP, and DEPT. These tables are created during the
default Oracle installation in the SCOTT user schema.

Viewing Table Structures: DESCRIBE
To determine whether the table structure was created correctly, you can use the SQL*Plus
command DESCRIBE tablename to display the table’s structure, as shown in Figure 3-4.
Because the DESCRIBE command is an SQL*Plus command rather than an SQL
command, it can be abbreviated as DESC, and an ending semicolon isn’t required.

66

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-4 The DESCRIBE command

When you issue the DESCRIBE command, all columns defined for the
ACCTMANAGER table are listed. For each column name, you can also check the column’s
datatype and whether the column allows NULL values. Notice that the results don’t show a
“NOT NULL” requirement for the AmID column—it’s blank. Because this column is the
primary key for the table, it shouldn’t be allowed to contain any blank entries. (This
problem is corrected in the next chapter.) If all the columns have the correct name,
datatype, and width—and your CREATE TABLE command executed successfully—you
now have a table ready to accept account managers’ data.

The DEFAULT settings and virtual column definitions can be verified by querying the
data dictionary object USER_TAB_COLUMNS. Use the query shown in Figure 3-5 to verify
the DEFAULT settings on the Amedate and Amcomm columns as well as the calculation
assigned to the Amearn virtual column. Notice that the Amearn column displays the
datatype NUMBER. The DBMS assigns the datatype to accommodate the data derived from
the expression in the virtual column definition.

67

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-5 Verify DEFAULT and virtual column settings

Invisible columns are a new option available in Oracle 12c. You can now create or alter
a column to make it hidden so it is not visible in basic statement such as a “SELECT *”
query. A developer may wish to make invisible columns if they need to reference a value in
application logic but do not intend these values to be directly visible to users. Including the
“invisible” option on a column definition as shown in Figure 3-6 will establish an invisible
column.

FIGURE 3-6 Define an invisible column

12c

68

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A SELECT *, as shown in Figure 3-7, or DESC command will not display the invisible
column. However, a direct column reference in a query will access the invisible column as
shown in Figure 3-8.

FIGURE 3-7 An invisible column is not shown with a general query

FIGURE 3-8 An invisible column directly referenced is retrieved

If at some point it is desired to make the column visible, the “visible” option can be
used in an ALTER TABLE command to modify the column. The ALTER TABLE command
will be covered in the next pages of this chapter. The data dictionary will assist in
identifying the hidden columns of a table. Query the USER_TAB_COLS data dictionary
object and reference the HIDDEN_COLUMN column to identify invisible columns as
shown in Figure 3-9.

FIGURE 3-9 Use the data dictionary to identify invisible columns

69

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T A B L E C R E A T I O N W I T H S U B Q U E R I E S

In the previous section, a table was created “from scratch.” However, sometimes you need
to create a table based on data in existing tables. The JustLee Books Marketing
Department needs to analyze customer data, and management doesn’t want the analysis
queries to slow down the production server on which orders are entered. The name and
street address columns aren’t needed for the analysis, so only a portion of the
CUSTOMERS table is required. The Marketing Department requested that the table be
named CUST_MKT.

A nested query, or subquery, is required to create this new table based on the existing
CUSTOMERS table. A subquery is a SELECT statement used in another SQL command.
Any type of action you can perform with a SELECT statement (such as filtering rows,
filtering columns, and calculating aggregate amounts) can be performed when creating a
table with a subquery. At this point, this textbook has covered only basic queries, so the
example is limited to the SELECT statement features that are already familiar to you.
After you have become familiar with all the features of the SELECT statement, you’ll
understand the expanded explanation of this topic in Chapter 12.

CREATE TABLE ... AS Command
To create a table containing data from existing tables, you can use the CREATE TABLE
command with an AS clause containing a subquery. The syntax, shown in Figure 3-10,
uses the CREATE TABLE keywords to instruct Oracle 12c to create a table. The new
table’s name is then provided.

FIGURE 3-10 CREATE TABLE … AS command syntax

If you need to give columns in the new table different names from those in the
existing table, list the new column names in parentheses after the table name, or
you can use column aliases. However, if you don’t want to change any column names,
the column list in the CREATE TABLE clause can be omitted. If you do provide a
column list, it must contain a name for every column to be returned by the query—
including names that remain the same. In other words, if the subquery is to
return five columns, five columns must be listed in the CREATE TABLE clause or
Oracle 12c returns an error message and the statement fails. In addition, the column
list must be in the same order as the columns listed in the subquery’s SELECT clause,
as Oracle 12c uses positional order to match the new column list to the SELECT
column list.

The AS keyword instructs Oracle 12c that the columns in the new table are based on
the columns the subquery returns. The AS keyword must precede the subquery. The
columns in the new table are created based on the same datatype and width as columns in
the existing table. To distinguish the subquery from the rest of the CREATE TABLE
command, the subquery must be enclosed in parentheses.

70

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 3-11 shows the creation of the CUST_MKT table based on a subquery. To verify
the table structure and contents in the results, execute the DESCRIBE and SELECT
commands, as shown in Figures 3-12 and 3-13.

FIGURE 3-11 Creating a table based on a subquery

FIGURE 3-12 Using DESCRIBE to verify the new table structure

71

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-13 Using SELECT to verify the new table contents

M O D I F Y I N G E X I S T I N G T A B L E S

At times, you need to make structural changes to a table. For example, you might need to
add a column, delete a column, or simply change a column’s size. Each of these changes is
made with the ALTER TABLE command. A useful feature of Oracle 12c is that you can
modify a table without having to shut down the database. Even if users are accessing a
table, it can still be modified without disruption of service. Figure 3-14 shows the syntax
of the ALTER TABLE command.

FIGURE 3-14 Syntax of the ALTER TABLE command

Whether you should use an ADD, MODIFY, or DROP COLUMN clause depends on the
type of change being made. First, take a look at the ADD clause.

72

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ALTER TABLE … ADD Command
Using an ADD clause with the ALTER TABLE command allows a user to add a new
column to a table. The same rules for creating a column in a new table apply to adding a
column to an existing table. The new column must be defined by a column name and
datatype (and width, if applicable). A default value can also be assigned. The difference is
that the new column is added at the end of the existing table—it will be the last column.
Figure 3-15 shows the syntax of the ALTER TABLE command with the ADD clause.

FIGURE 3-15 Syntax of the ALTER TABLE … ADD command

Suppose that after the PUBLISHER table was created, management requests adding a
column for a telephone number extension. The column name should be Ext. The column
can consist of a maximum of four numeric digits, so the column is defined as a NUMBER
datatype with a precision of four. To make this change to the PUBLISHER table, issue the
command shown in Figure 3-16.

FIGURE 3-16 The ALTER TABLE … ADD command

73

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Oracle 12c returns a message indicating that the table was altered successfully. To
double-check that the column was added with the correct datatype, you can also issue the
DESCRIBE command shown in Figure 3-16.

T I P

When executing multiple commands in SQL Developer, use the Run Script button rather than the
Execute Statement button. The Execute Statement button processes only one statement per execution.

N O T E

When you add a column to a table containing rows of data, the new column is empty for all existing
rows. Issue a SELECT command on the PUBLISHER table to confirm that the new Ext column is empty.

If you need to add more than one column to the ACCTMANAGER table, list the
additional columns in a list, and separate each column and its datatype with a comma,
using the same format as the CREATE TABLE command.

ALTER TABLE ... MODIFY Command
To change an existing column’s definition, you can use a MODIFY clause with the ALTER
TABLE command. The changes that can be made to a column include the following:

• Changing the column size (increase or decrease)
• Changing the datatype (such as VARCHAR2 to CHAR)
• Changing or adding the default value of a column (such as DEFAULT

SYSDATE)
• Set the invisible or visible option of a column

The syntax of the ALTER TABLE … MODIFY command is shown in Figure 3-17.

ALTER TABLE tablename
MODIFY (columnname datatype [DEFAULT] ,...);

FIGURE 3-17 Syntax of the ALTER TABLE … MODIFY command

You should be aware of three rules when modifying existing columns:

• A column must be as wide as the data fields it already contains.
• If a NUMBER column already contains data, you can’t decrease the column’s

precision or scale.
• Changing the default value of a column doesn’t change the values of data

already in the table.

74

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now take a closer look at these rules. The first rule applies when you want to decrease
the size of a column already containing data. You can decrease a column’s size only to a
size that’s no less than the largest width of existing data. For example, a column has been
defined as a VARCHAR2 datatype with a width of 15 characters. However, the largest
entry in that particular column contains only 12 characters. Therefore, you can decrease
the column size only to a width of 12. If you try to decrease the size to a width less than
12, Oracle 12c returns an error message, and the SQL statement fails. As shown in Figure
3-18, when a user attempts to decrease the column width to a size that doesn’t
accommodate existing data, Oracle 12c returns an ORA-01441 error message, and the
table isn’t altered.

FIGURE 3-18 Modify column size error

Second, Oracle 12c doesn’t allow you to decrease the precision or scale of a NUMBER
column if the column contains any data. Regardless of whether the current values stored
in a NUMBER column will be affected, Oracle 12c returns an ORA-01440 error message,
and the statement fails unless the column is empty. As shown in Figure 3-19, if you
attempt to change the size of the Retail column in the BOOKS table, an error message is
displayed, and the table isn’t altered.

75

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-19 Modify numeric column error

The third rule applies when you modify existing columns and decide to change the
default value assigned to a column. When a column’s default value is changed, it changes
only the value assigned to future rows inserted into the table. The default value assigned
to existing rows remains the same. Therefore, if the default value in existing rows must be
changed, these changes must be performed manually. (Chapter 5 explains how to change
existing values in a row.)

JustLee Books has decided to assign a service rating code to every publisher
that reflects the publisher’s service promptness. The code should initially be set to
N when a new publisher is added. To demonstrate the effect of adding a DEFAULT
option to an existing column, the new column is added first and then modified to set
the default value. Figure 3-20 shows the ALTER TABLE command to accomplish this
task. Notice that the SELECT statement shows that the new Rating column is empty
for existing rows.

76

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-20 Adding the Rating column to the PUBLISHER table

Second, the DEFAULT option is added to the new column, as shown in Figure 3-21.
Notice that the SELECT statement shows that the new Rating column is still empty for
existing rows; the DEFAULT option takes effect only on new rows added. You need to
query the data dictionary to verify the DEFAULT setting, as shown earlier in Figure 3-5.

FIGURE 3-21 Adding the DEFAULT option to the new column

77

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Column headings might be truncated based on available line space, so your column headers might vary
from those shown in figures. Formatting column widths in SQL*Plus output is covered in Chapter 14
(which is part of this book’s online materials).

Now return your attention to the ACCTMANAGER table created earlier in this
chapter. A common issue with tables is the need to widen columns to accommodate longer
data values. After creating the ACCTMANAGER table, you find out that one of the account
managers has a long name requiring more than the 12 spaces you assigned to the Amlast
column. To accommodate the name, the Amlast column must be increased to a width of
18. What command should you use to do this?

Figure 3-22 shows the ALTER TABLE command to widen the Amlast column. Notice
that the command’s MODIFY clause doesn’t state that the Amlast column should be
increased by six characters. Instead, the MODIFY clause states the datatype and the new
width (increased to the new total width needed for the column). To make certain the
change is made, you might also use the DESCRIBE command to view the new table
structure.

FIGURE 3-22 The ALTER TABLE … MODIFY command to increase the column width

78

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ALTER TABLE … DROP COLUMN Command
To delete an existing column from a table, you can use the DROP COLUMN clause with
the ALTER TABLE command. This clause deletes both the column and its contents, so it
should be used with extreme caution. Figure 3-23 shows the syntax of the ALTER TABLE
… DROP COLUMN command.

FIGURE 3-23 Syntax of the ALTER TABLE … DROP COLUMN command

You should keep the following rules in mind when using the DROP COLUMN clause:

• Unlike using ALTER TABLE with the ADD or MODIFY clauses, a DROP
COLUMN clause can reference only one column.

• If you drop a column from a table, the deletion is permanent. You can’t
“undo” the damage if you delete the wrong column accidentally. The only
option is to add the column back to the table and then manually reenter all
the data it contained previously.

• You can’t delete the last remaining column in a table. If a table contains only
one column and you try to delete it, the command fails, and Oracle 12c
returns an error message.

• A primary key column can’t be dropped from a table.

Previously, you added the Ext column to store each publisher’s telephone extension.
However, management has decided that the extension isn’t necessary and doesn’t want to
waste the storage space that column would take up. Therefore, the Ext column needs to be
deleted from the PUBLISHER table with the command shown in Figure 3-24.

FIGURE 3-24 The ALTER TABLE … DROP COLUMN command

79

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the command is processed, the Ext column of the PUBLISHER table is removed.
To verify that the column no longer exists, use the DESCRIBE command to list the
structure of the PUBLISHER table.

ALTER TABLE … SET UNUSED/DROP UNUSED COLUMNS Command
When the Oracle 12c server executes database structural changes, such as dropping a
column from a large table, processing of other current statements might be delayed. To
avoid this problem, you can include a SET UNUSED clause in the ALTER TABLE
command to mark the column for deletion at a later time. If a column is marked for
deletion, it’s unavailable and isn’t displayed in the table structure. Because the column
is unavailable, it doesn’t appear in the results of any queries, and no other operation
can be performed on the column except the ALTER TABLE … DROP UNUSED
command.

In other words, after a column is set as “unused,” the column and all its contents
are no longer available and can’t be recovered in the future. The command simply
postpones physically erasing data from storage until later—usually when the server is
processing fewer queries, such as after business hours. A DROP UNUSED COLUMNS
clause is used with the ALTER TABLE command to complete the deletion process for
any column marked as unused. Figure 3-25 shows the syntax of the ALTER TABLE …

SET UNUSED command. As shown, the syntax for this command has two options for
the SET UNUSED clause.

FIGURE 3-25 Syntax of the ALTER TABLE … SET UNUSED command

Regardless of the syntax used, only one column per command can be marked for
deletion. Figure 3-26 shows the syntax to drop a column previously identified as unused.

FIGURE 3-26 Syntax of the ALTER TABLE … DROP UNUSED COLUMNS command

When the DROP UNUSED COLUMNS clause is used, any column previously set as “unused”
is deleted, and any storage previously occupied by data in the column becomes available.

Suppose the JustLee Books Marketing Department has decided it doesn’t need to see
the customer state data in the CUST_MKT table. To delete this column from the
CUST_MKT table, you could use the DROP COLUMN option of the ALTER TABLE
command. However, if the table contains thousands of records, deleting a column slows

80

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

down operations for other Oracle 12c users. In this case, you can mark the State column
of the CUST_MKT table as unused with the command shown in Figure 3-27.

FIGURE 3-27 The ALTER TABLE … SET UNUSED command

To make certain the State column was marked for deletion correctly, you can use the
DESCRIBE command to check that the column is no longer available, as shown in Figure 3-28.

FIGURE 3-28 Verifying that the column is no longer available

81

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can also reference the data dictionary to determine whether any columns are
marked as unused. The data dictionary object USER_UNUSED_GOL_TABS contains
information on which tables have unused columns and how many columns are set as
unused. Figure 3-29 displays a query on this object.

FIGURE 3-29 Listing tables with columns marked as unused

After the State column has been set as unused, the storage space taken up by data in
the column can be reclaimed by using the command shown in Figure 3-30.

FIGURE 3-30 The ALTER TABLE … DROP UNUSED COLUMNS command

82

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Renaming a Table
Oracle 12c allows changing the name of any table you own by using the RENAME … TO
command. The syntax of this command is shown in Figure 3-31.

FIGURE 3-31 Syntax of the RENAME … TO command

Previously, the CUST_MKT table was created. However, the Marketing Department
wants to maintain a series of snapshots for customer data and, therefore, wants the table
name to reflect the month and year the table was created. Assuming the current
CUST_MKT table was created in September 2009, the command to make the name change
is shown in Figure 3-32.

FIGURE 3-32 The RENAME … TO command

After the RENAME … TO command is executed, any queries directed to the original
table named CUST_MKT result in an error message. The table can now be referenced only
as the CUST_MKT_092009 table. The SELECT statements shown in Figure 3-33 and
Figure 3-34 demonstrate this point.

83

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-33 Verifying that the CUST_MKT table no longer exists

FIGURE 3-34 Verifying that the RENAME operation was successful

84

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T I P

When working in an organization, don’t change the name of a table accessed by other users unless you
first inform them of the new table name. Failure to inform users of the change prevents them from
finishing their work and could create havoc until the problem is identified. Of course, this is assuming
you didn’t change the table’s name to stop someone from accessing it in the first place!

Truncating a Table
When a table is truncated, all rows in the table are removed, but the table itself remains.
In other words, the columns still exist, even though no values are stored in them. This
action is basically the same as deleting all rows in a table. However, if you simply delete all
rows in a table, the storage space these rows occupy is still allocated to the table. To delete
the rows stored in a table and free up the storage space they occupied, use the
TRUNCATE TABLE command. The syntax of this command is shown in Figure 3-35.

FIGURE 3-35 Syntax of the TRUNCATE TABLE command

Assume the CUST_MKT_092009 table was originally created a day early and didn’t
include customers added on the last day of September. The database administrator is
going to repopulate the table; however, all the current rows need to be removed before the
repopulation can occur. Keep in mind that the TRUNCATE TABLE command keeps the
table structure intact so that it can be reused in the future. The command shown in Figure
3-36 deletes the rows currently in the CUST_MKT_092009 table and releases the storage
space they occupy.

FIGURE 3-36 The TRUNCATE TABLE command

85

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To verify that all rows of the CUST_MKT_092009 table have been removed, perform a
query to see all rows in the table. If the table still exists but contains no rows, Oracle 12c
displays a message indicating that no rows exist.

T I P

The TRUNCATE command is quite useful when creating and using database tables to support testing
new applications. As you test an application, typically the tables are populated with sample data. The
TRUNCATE command is an easy way to maintain table structures while eliminating the test data to start
another round of testing or move the tables into production.

D E L E T I N G A T A B L E

You can remove a table from an Oracle 12c database by issuing the DROP TABLE
command. Figure 3-37 shows the syntax of this command.

FIGURE 3-37 Syntax of the DROP TABLE command

For example, after truncating the CUST_MKT_092009 table, you realize you no longer
need the table (or so many modifications have to be made to the table structure that it’s
not worth the trouble to make the changes). The CUST_MKT_092009 table can be deleted
by using the DROP TABLE command, shown in Figure 3-38.

FIGURE 3-38 Using the DROP TABLE command to remove the CUST_MKT_092009 table

86

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the table has been dropped, the table name is no longer valid, and the
table can’t be accessed by any commands. To verify that the correct table was deleted,
you can use the DESCRIBE command to see the structure of the CUST_MKT_092009
table. If the table no longer exists, Oracle 12c returns an error message, as shown in
Figure 3-39.

FIGURE 3-39 Using DESCRIBE to verify the dropped table

Starting with Oracle 10g, a new feature of the DROP TABLE command is available. In
previous Oracle versions, the DROP TABLE command was permanent, and the only
method for recovering a dropped table was restoring the data from backups. In recent
Oracle versions, a dropped table is now placed in a recycle bin and can be restored—both
table structure and data! Now that the CUST_MKT_092009 table has been dropped, you
should check the recycle bin with the command shown in Figure 3-40. Notice that a new
name beginning with BIN has been assigned to the table. This new name is assigned by
the system, so your results might vary.

87

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-40 Checking the recycle bin

N O T E

If you have performed additional DROP TABLE commands, you’ll see more rows of output than what’s
shown in Figure 3-36.

Now that you have a table in the recycle bin, how do you recover the table to use it
again? You need to use the FLASHBACK TABLE command, shown in Figure 3-41. Keep in
mind that the entire table structure and all data in the table at the time of the drop are
restored. After performing this command, issue DESCRIBE and SELECT commands on
the table to verify that it’s restored.

FIGURE 3-41 Using FLASHBACK TABLE to restore a dropped table

88

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Obviously, if the dropped table is actually just moved to a recycle bin, the storage
space required for the table is still being used. If you have limited storage space, you
might not want this to happen. In addition, sometimes you know that you want to
delete a table permanently. If the table has already been dropped and is now in the
recycle bin, you need to remove it from the recycle bin to delete the table
permanently and clear the storage space being used. Drop the CUST_MKT_092009
table again and verify its existence in the recycle bin with the commands shown in
Figure 3-42.

FIGURE 3-42 Dropping a table and checking the recycle bin

Now you can remove the table from the recycle bin by using the PURGE TABLE
command and referencing the name the table has been assigned in the recycle bin.
Figure 3-43 shows removing the table from the recycle bin.

89

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 3-43 Removing a table from the recycle bin

N O T E

Keep in mind that the system assigns the table name in the recycle bin, so you’ll most likely have a
different table name than what’s shown in Figure 3-39. Also, if you want to remove all tables in the
recycle bin, you can do so by issuing a PURGE RECYCLE BIN command.

If you’re sure you want to delete a table permanently, you can bypass moving the
table to the recycle bin by using the PURGE option in the DROP TABLE statement. For
example, you could have dropped the CUST_MKT_092009 table with the command shown
in Figure 3-44, and then it wouldn’t have been moved to the recycle bin. Keep in mind
that using this option means the table can’t be recovered.

FIGURE 3-44 Dropping a table with the PURGE option

C A U T I O N

Always use caution when deleting with the PURGE option. After a table is deleted with PURGE, the
table and all data it contains are gone. In addition, any index that has been created based on this table
is dropped. (Indexes are discussed in Chapter 6.)

90

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• You create a table with the CREATE TABLE command. Each column to be
included in the table must be defined in terms of the column name, datatype, and
the width (for certain datatypes).

• A table can contain up to 1000 columns.
• Each column name in a table must be unique.
• Table and column names can contain as many as 30 characters. The names must

begin with a letter and can’t contain blank spaces.
• A DEFAULT setting assigns a column value if no value is provided for the column

when a new row is added.
• A virtual column is a column defined by an expression that generates a value

based on other column values in the table when queried.
• A query on the data dictionary object USER_TAB_COLUMNS enables you to

verify DEFAULT and virtual column settings.
• A column may be hidden from users by using the invisible option.
• To create a table based on existing tables’ structure and data, use the CREATE

TABLE … AS command to use a subquery that extracts the necessary data from
the existing table.

• You can change a table’s structure with the ALTER TABLE command.
Columns can be added, resized, and even deleted with the ALTER TABLE
command.

• When using the ALTER TABLE command with the DROP COLUMN clause, only
one column can be specified for deletion.

• You can use the SET UNUSED clause to mark a column so that its storage space
can be freed up later.

• Tables can be renamed with the RENAME … TO command.
• To delete all the rows in a table, use the TRUNCATE TABLE command.
• To remove both the structure of a table and all its contents, use the DROP TABLE

command.
• A dropped table is moved to the recycle bin and can be recovered by using the

FLASHBACK TABLE command.
• Using the PURGE option in a DROP TABLE command removes the table

permanently, meaning you can’t recover it from the recycle bin.

91

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Commands and Clauses Description Example

Creating Tables

CREATE TABLE Creates a new table in
the database—the user
names the columns;
defaults and datatypes
define/limit columns.
To view the table
structure, use the
SQL*PLUS command
DESCRIBE.

CREATE TABLE acctmanager
(amid VARCHAR2(4),
amname VARCHAR2(20),
amedate DATE DEFAULT
SYSDATE,

region CHAR(2));

CREATE TABLE ...
AS (...)

Creates a table from
existing database
tables, using the AS
clause and subqueries.

CREATE TABLE customerorder
AS (SELECT customer#,

orderdate, shipdate
FROM orders);

Modifying Tables

ALTER TABLE ... ADD Adds a column to a
table.

ALTER TABLE acctmanager
ADD (ext NUMBER(4));

ALTER TABLE ... MODIFY Changes a column size,
datatype, or default
value.

ALTER TABLE acctmanager
MODIFY(amname VARCHAR2(25));

ALTER TABLE ... DROP
COLUMN

Deletes one column
from a table.

ALTER TABLE acctmanager
DROP COLUMN ext;

ALTER TABLE ... SET
UNUSED
or
SET UNUSED COLUMN

Marks a column for
deletion at a later
time.

ALTER TABLE cust_mkt
SET UNUSED(state);

DROP UNUSED COLUMNS Completes the
deletion of a column
marked with SET
UNUSED.

ALTER TABLE cust_mkt
DROP UNUSED COLUMNS;

RENAME ... TO Changes a table name. RENAME cust_mkt
TO cust_mkt_092009;

TRUNCATE TABLE Deletes table rows,
but table name and
column structure
remain.

TRUNCATE TABLE
cust_mkt_092009;

92

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

To answer the following questions, refer to the tables in the JustLee Books database.

1. Which command is used to create a table based on data already contained in an existing
table?

2. List four datatypes supported by Oracle 12c, and provide an example of data that could be
stored by each datatype.

3. What guidelines should you follow when naming tables and columns in Oracle 12c?

4. What is the difference between dropping a column and setting a column as unused?

5. How many columns can be dropped in one ALTER TABLE command?

6. What happens to the existing rows of a table if the DEFAULT value of a column is
changed?

7. Explain the difference between truncating a table and deleting a table.

8. If you add a new column to an existing table, where does the column appear in relation to
existing columns?

9. What happens if you try to decrease the scale or precision of a NUMBER column to a
value less than the data already stored in the field?

10. Are a table and the data contained in the table erased from the system permanently if a
DROP TABLE command is issued on the table?

Commands and Clauses Description Example

Deleting Tables

DROP TABLE ... PURGE Removes an entire table
permanently from the
database with the
PURGE option.

DROP TABLE cust_mkt_092009
PURGE;

PURGE TABLE Permanently deletes a
table in the recycle bin.

PURGE TABLE
"BIN$IDMdosJceWxgg041==$0";

Recovering Tables

FLASHBACK TABLE ...
TO BEFORE DROP

Recovers a dropped
table if the PURGE
option isn’t used when
the table is dropped.

FLASHBACK TABLE
cust_mkt_092009
TO BEFORE DROP;

Syntax Guide (continued)

93

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multiple Choice

To answer the following questions, refer to the tables in the JustLee Books database.

1. Which of the following is a correct statement?

a. You can restore the data deleted with the DROP COLUMN clause, but not the data
deleted with the SET UNUSED clause.

b. You can’t create empty tables—all tables must contain at least three rows of data.

c. A table can contain a maximum of 1000 columns.

d. The maximum length of a table name is 265 characters.

2. Which of the following is a valid SQL statement?

a. ALTER TABLE secustomersspent ADD DATE lastorder;

b. ALTER TABLE secustomerorders DROP retail;

c. CREATE TABLE newtable AS(SELECT * FROM customers);

d. ALTER TABLE drop column *;

3. Which of the following is not a correct statement?

a. A table can be modified only if it doesn’t contain any rows of data.

b. The maximum number of characters in a table name is 30.

c. You can add more than one column at a time to a table.

d. You can’t recover data contained in a table that has been truncated.

4. Which of the following is not a valid SQL statement?

a. CREATE TABLE anothernewtable(newtableid VARCHAR2(2));

b. CREATE TABLE anothernewtable(date, anotherdate)

AS (SELECT orderdate, shipdate FROM orders);

c. CREATE TABLE anothernewtable(firstdate, seconddate)

AS (SELECT orderdate, shipdate FROM orders);

d. All of the above are valid statements.

5. Which of the following is true?

a. If you truncate a table, you can’t add new data to the table.

b. If you change the default value of an existing column, all existing rows containing a
NULL value in the same column are set to the new DEFAULT value.

c. If you delete a column from a table, you can’t add a column to the table with the same
name as the previously deleted column.

d. If you add a column to an existing table, it’s always added as the last column of the table.

6. Which of the following commands creates a new table containing a virtual column?

a. CREATE TABLE newtable AS(SELECT order#, title, quantity, retail FROM

orders);

b. CREATE TABLE newtable(price NUMBER(3), total NUMBER(8,2));

c. CREATE TABLE newtable(calcl NUMBER(4), calc2 NUMBER(4);

d. CREATE TABLE newtable(cola NUMBER(3), colb NUMBER(3),

cole AS (cola+colb));

94

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Which of the following commands drops any columns marked as unused from the
SECUSTOMERORDERS table?

a. DROP COLUMN FROM secustomerorders WHERE column_status = UNUSED;

b. ALTER TABLE secustomerorders DROP UNUSED COLUMNS;

c. ALTER TABLE secustomerorders DROP (unused);

d. DROP UNUSED COLUMNS;

8. Which of the following statements is correct?

a. A table can contain a maximum of only one column marked as unused.

b. You can delete a table by removing all columns in the table.

c. Using the SET UNUSED clause allows you to free up storage space used by a column.

d. None of the above statements are correct.

9. Which of the following commands removes all data from a table but leaves the table’s
structure intact?

a. ALTER TABLE secustomerorders DROP UNUSED COLUMNS;

b. TRUNCATE TABLE secustomerorders;

c. DELETE TABLE secustomerorders;

d. DROP TABLE secustomerorders;

10. Which of the following commands changes a table’s name from OLDNAME to NEWNAME?

a. RENAME oldname TO newname;

b. RENAME table FROM oldname TO newname;

c. ALTER TABLE oldname MODIFY TO newname;

d. CREATE TABLE newname (SELECT * FROM oldname);

11. The default width of a VARCHAR2 field is:

a. 1

b. 30

c. 255

d. None—there’s no default width for a VARCHAR2 field.

12. Which of the following is not a valid statement?

a. You can change the name of a table only if it doesn’t contain any data.

b. You can change the length of a column that doesn’t contain any data.

c. You can delete a column that doesn’t contain any data.

d. You can add a column to a table.

13. Which of the following characters can be used in a table name?

a. –

b. (

c. %

d. !

95

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. Which of the following is true?

a. All data in a table can be recovered if the table is dropped with the PURGE option.

b. All data in a table can be recovered from the recycle bin if the table is dropped.

c. All data in a table is lost if the table is dropped.

d. All of the above statements are true.

15. Which of the following commands is valid?

a. RENAME customer# TO customernumber FROM customers;

b. ALTER TABLE customers RENAME customer# TO customernum;

c. DELETE TABLE customers;

d. ALTER TABLE customers DROP UNUSED COLUMNS;

16. Which of the following commands creates a new table containing two columns?

a. CREATE TABLE newname (coll DATE, col2 VARCHAR2);

b. CREATE TABLE newname AS (SELECT title, retail, cost FROM books);

c. CREATE TABLEnewname (coll, col2);

d. CREATE TABLE newname (coll DATE DEFAULT SYSDATE, col2 VARCHAR2(1));

17. Which of the following is a valid table name?

a. 9NEWTABLE

b. DATE9

c. NEW”TABLE

d. None of the above are valid table names.

18. Which of the following is a valid datatype?

a. CHAR3

b. VARCHAR4(3)

c. NUM

d. NUMBER

19. Which object in the data dictionary enables you to verify DEFAULT column settings?

a. DEFAULT_COLUMNS

b. DEF_TAB_COLUMNS

c. USER_TAB_COLUMNS

d. None of the above

20. Which of the following SQL statements changes the size of the Title column in the BOOKS
table from the current length of 30 characters to the length of 35 characters?

a. ALTER TABLE books CHANGE title VARCHAR(35);

b. ALTER TABLE books MODIFY (title VARCHAR2(35));

c. ALTER TABLE books MODIFY title (VARCHAR2(35));

d. ALTER TABLE books MODIFY (title VARCHAR2(+5));

96

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hands-On Assignments

1. Create a new table containing the category code and description for the categories of
books sold by JustLee Books. The table should be called CATEGORY, and the columns
should be CatCode and CatDesc. The CatCode column should store a maximum of
2 characters, and the CatDesc column should store a maximum of 10 characters.

2. Create a new table containing these four columns: Emp#, Lastname, Firstname, and
Job_class. The table name should be EMPLOYEES. The Job_class column should be able
to store character strings up to a maximum length of four, but the column values shouldn’t
be padded if the value has less than four characters. The Emp# column contains a numeric
ID and should allow a five-digit number. Use column sizes you consider suitable for the
Firstname and Lastname columns.

3. Add two columns to the EMPLOYEES table. One column, named EmpDate, contains the
date of employment for each employee, and its default value should be the system date.
The second column, named EndDate, contains employees’ date of termination.

4. Modify the Job_class column of the EMPLOYEES table so that it allows storing a maximum
width of two characters.

5. Delete the EndDate column from the EMPLOYEES table.

6. Rename the EMPLOYEES table as JL_EMPS.

7. Create a new table containing these four columns from the existing BOOKS table: ISBN,
Cost, Retail, and Category. The name of the ISBN column should be ID, and the other
columns should keep their original names. Name the new table BOOK_PRICING.

8. Mark the Category column of the BOOK_PRICING table as unused. Verify that the column
is no longer available.

9. Truncate the BOOK_PRICING table, and then verify that the table still exists but no longer
contains any data.

10. Delete the BOOK_PRICING table permanently so that it isn’t moved to the recycle bin.
Delete the JL_EMPS table so that it can be restored. Restore the JL_EMPS table and
verify that it’s available again.

Advanced Challenge

The management of JustLee Books has approved implementing a new commission policy and
benefits plan for the account managers. The following changes need to be made to the existing
database:

• Two new columns must be added to the ACCTMANAGER table: one to indicate
the commission classification assigned to each employee and another to
contain each employee’s benefits code. The commission classification column
should be able to store integers up to a maximum value of 99 and be named
Comm_id. The value of the Comm_id column should be set to a value of 10
automatically if no value is provided when a row is added. The benefits code
column should also accommodate integer values up to a maximum of 99 and
be named Ben_id.

97

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• A new table, COMMRATE, must be created to store the commission rate schedule
and must contain the following columns:

• Comm_id: A numeric column similar to the one added to the
ACCTMANAGER table

• Comm_rank: A character field that can store a rank name allowing up to 15
characters

• Rate: A numeric field that can store two decimal digits (such as .01 or .03)

• A new table, BENEFITS, must be created to store the available benefit plan
options and must contain the following columns:

• Ben_id: A numeric column similar to the one added to the ACCTMANAGER table
• Ben_plan: A character field that can store a single character value
• Ben_provider: A numeric field that can store a three-digit integer
• Active: A character field that can hold a value of Y or N

Required: Create the SQL statements to address the changes needed to support the new
commission and benefits data.

Case Study: City Jail

In the Chapter 1 case study, you designed the new database for City Jail. Now you need to
create all the tables for the database. First, create all the tables using the information outlined in
Section A. Second, make the modifications outlined in Section B. Save all SQL statements used
to accomplish these tasks.

Section A

Table Column Data Description Length Scale Default Value

Aliases Alias_iD Numeric 6

Criminal_ID Numeric 6 0

Alias Variable character 10

Criminals Criminal_ID Numeric 6 0

Last Variable character 15

First Variable character 10

Street Variable character 30

City Variable character 20

State Fixed character 2

Zip Fixed character 5

Phone Fixed character 10

98

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table Column Data Description Length Scale Default Value

V_status Fixed character 1 N (for No)

P_status Fixed character 1 N (for No)

Crimes Crime_ID Numeric 9 0

Criminal_ID Numeric 6 0

Classification Fixed character 1

Data_charged Date

Status Fixed character 2

Hearing_date Date

Appeal_cut_date Date

Sentences Sentence_ID Numeric 6

Criminal_ID Numeric 6

Type Fixed character 1

Prob_ID Numeric 5

Start_date Date

End_date Date

Violations Numeric 3

Prob_officers Prob_ID Numeric 5

Last Variable character 15

First Variable character 10

Street Variable character 30

City Variable character 20

State Fixed character 2

Zip Fixed character 5

Phone Fixed character 10

Email Variable character 30

Status Fixed character 1 A (for Active)

99

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table Column Data Description Length Scale Default Value

Crime charges Charge_ID Numeric 10 0

Crime_ID Numeric 9 0

Crime_code Numeric 3 0

Charge_status Fixed character 2

Fine_amount Numeric 7 2

Court_fee Numeric 7 2

Amount_paid Numeric 7 2

Pay_due_date Date

Crime_officers Crime_ID Numeric 9 0

Officer_ID Numeric 8 0

Officers Officer_ID Numeric 8 0

Last Variable character 15

First Variable character 10

Precinct Fixed character 4

Badge Variable character 14

Phone Fixed character 10

Status Fixed character 1 A (for Active)

Appeals Appeal_ID Numeric 5

Crime_ID Numeric 9 0

Filing_date Date

Hearing_date Date

Status Fixed character 1 P (for Pending)

Crime_codes Crime_code Numeric 3 0

Code_description Variable character 30

100

Chapter 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table Column Possible Values

Criminals V_status Y (Yes), N (No)

Criminals P_status Y (Yes), N (No)

Crimes Classification F (Felony), M (Misdemeanor), O (Other), U (Undefined)

Crimes Status CL (Closed), CA (Can Appeal), IA (In Appeal)

Sentences Type J (Jail Period), H (House Arrest), P (Probation)

Prob_officers Status A (Active), I (Inactive)

Crime_charges Charge_status PD (Pending), GL (Guilty), NG (Not Guilty)

Officers Status A (Active), I (Inactive)

Appeals Status P (Pending), A (Approved), D (Disapproved)

Section B

• Add a default value of U for the Classification column of the Crimes table.
• Add a column named Date_Recorded to the Crimes table. This column needs to

hold date values and should be set to the current date by default.
• Add a column to the Prob_officers table to contain the pager number for each

officer. The column needs to accommodate a phone number, including area code.
Name the column Pager#.

• Change the Alias column in the Aliases table to accommodate up to 20
characters.

101

Table Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R4
CONSTRAINTS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Explain the purpose of constraints in a table

• Distinguish among PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK,
and NOT NULL constraints and understand the correct use of each
constraint

• Understand how to create constraints when creating a table or modifying
an existing table

• Distinguish between creating constraints at the column level and the
table level

• Create PRIMARY KEY constraints for a single column and a composite
primary key

• Create a FOREIGN KEY constraint

• Create a UNIQUE constraint

• Create a CHECK constraint

• Create a NOT NULL constraint with the ALTER TABLE … MODIFY
command

• Include constraints during table creation

• Add multiple constraints on a single column

• View constraint information

• Use the DISABLE and ENABLE commands with constraints

• Use the DROP command with constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

In Chapter 3, you learned how to create tables by using SQL commands. In this chapter,
you learn how to add constraints to existing tables and include constraints during the table
creation process. Constraints are rules used to enforce business rules, practices, and
policies to ensure the accuracy and integrity of data. For example, a customer places an
order on April 2, 2009. However, when the order is shipped, the ship date is entered as
March 31, 2009. Shipping an order before the order is placed is impossible, and it indicates
a problem with data integrity. If these errors exist in the database, management can’t rely
on it for decision making or even to support day-to-day operations. Constraints help solve
these problems by not allowing data to be added to tables if the data violates certain rules.

This chapter examines five constraints, listed in Table 4-1, that can prevent entering
erroneous data in a database.

TABLE 4-1 Constraint Types

Constraint Description

PRIMARY KEY Determines which column(s) uniquely identifies each record. The primary key
can’t be NULL, and the data values must be unique.

FOREIGN KEY In a one-to-many or parent-child relationship, the constraint is added to the
“many” table. The constraint ensures that if a value is entered in a specified
column, it must already exist in the “one” table, or the record isn’t added.

UNIQUE Ensures that all data values stored in a specified column are unique. The UNIQUE
constraint differs from the PRIMARY KEY constraint in that it allows NULL values.

CHECK Ensures that a specified condition is true before the data value is added to a table.
For example, an order’s ship date can’t be earlier than its order date.

NOT NULL Ensures that a specified column can’t contain a NULL value. The NOT NULL
constraint can be created only with the column-level approach to table creation.

D A T A B A S E P R E P A R A T I O N

The examples in this chapter assume you have already created the JustLee Books database as
instructed in Chapter 2.

N O T E

As developers build applications, mechanisms are often included to check data input. For example, if a
particular field in the database requires providing a value, the application code can verify that a value
was provided for this field on the input form before submitting the values to the database. Application
data verification methods can serve as the first line of defense to ensure data integrity. Database
constraints are the last line of defense to check data before it’s added to the database.

104

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C R E A T I N G C O N S T R A I N T S

You can add constraints during table creation as part of the CREATE TABLE command,
or you can do so after the table is created by using the ALTER TABLE command. When
creating a constraint, you can choose one of the following options:

• Name the constraint following the same rules as for tables and columns.
• Omit the constraint name and allow Oracle 12c to generate the name.

If the Oracle 12c server names the constraint, it follows the format SYS_Cn, where n
is an assigned numeric value to make the name unique. Providing a descriptive name for a
constraint is a better practice so that you can identify it easily in the future. For example,
constraint violation errors reference the constraint name, so an easy-to-understand name
indicating the table, column, and type of constraint is quite helpful.

Industry convention is to use the format tablename_columnname_constrainttype for
the constraint name—for example, customers_customer#_pk. Constraint types are
designated by abbreviations, as shown in Table 4-2.

TABLE 4-2 Constraint Type Abbreviations

Constraint Abbreviation

PRIMARY KEY _pk

FOREIGN KEY _fk

UNIQUE _uk

CHECK _ck

NOT NULL _nn

N O T E

Most development groups have a set of coding conventions that include guidelines for naming database
objects, including constraints. When joining a new development group or company, you should review its
coding conventions.

When creating a table, you can create a constraint in two ways: at the column level or
the table level. Creating a constraint at the column level means the constraint’s definition
is included as part of the column definition, similar to assigning a default value to a
column. Creating a constraint at the table level means the constraint’s definition is
separate from the column definition. These two methods differ only in that they include
the constraint code in different parts of the CREATE TABLE statement.

105

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating Constraints at the Column Level
When you create constraints at the column level, the constraint applies to the specified
column. The optional CONSTRAINT keyword is used if you want to give the constraint a
specific name instead of letting Oracle 12c generate one for you. The constraint type uses
the following keywords to identify the type of constraint you’re creating:

• PRIMARY KEY
• FOREIGN KEY
• UNIQUE
• CHECK
• NOT NULL

N O T E

A NULL value means the column contains no value.

You can create any type of constraint at the column level—unless the constraint is being
defined for more than one column (for example, a composite primary key). If the constraint
applies to more than one column, you must create the constraint at the table level. The
general syntax for creating a constraint at the column level is shown in Figure 4-1.

FIGURE 4-1 Syntax for creating a column-level constraint

As you see later in this chapter, a NOT NULL constraint can be created only at the
column level.

Creating Constraints at the Table Level
When you create a constraint at the table level, the constraint definition is separate from any
column definitions. Figure 4-2 shows the syntax for creating a constraint at the table level.

FIGURE 4-2 Syntax for creating a table-level constraint

If you create the constraint at the same time you’re creating a table, you list the
constraint after all the columns are defined. In fact, the main difference in the syntax of a
column-level constraint and a table-level constraint is that you provide column names for
the table-level constraint at the end of the constraint definition inside parentheses,

106

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

instead of at the beginning of the constraint definition. You can use the table-level
approach to create any type of constraint except a NOT NULL constraint, which can be
created only with the column-level approach, as mentioned previously.

N O T E

Although a constraint can be created at the column level or the table level, the constraint is always
enforced on a row level, which means you can’t add or delete the entire row if any column value violates
a constraint.

To simplify the examples for different types of constraints, the following sections show
how to add constraints to an existing table. The original database creation script to build
the JustLee database doesn’t address all the needed constraints, so in the next section, you
make the necessary additions. After you have learned how to add constraints by using the
ALTER TABLE command, you learn how to include constraints at both the column level
and table level during initial table creation by using the CREATE TABLE statement.

U S I N G T H E P R I M A R Y K E Y C O N S T R A I N T

A PRIMARY KEY constraint is used to enforce the primary key requirements for a table.
Although you can create a table in Oracle 12c without specifying a primary key, the
constraint makes certain the columns identified as the table’s primary key are unique and
do not contain NULL values. As stated, a NULL value means no entry is made. It’s not
equivalent to entering a zero or a blank. Figure 4-3 shows the syntax of the ALTER
TABLE command to add a PRIMARY KEY constraint to an existing table.

FIGURE 4-3 Syntax of the ALTER TABLE command to add a PRIMARY KEY constraint

Take a look at an example. The CUSTOMERS table stores a row of data for each
customer but doesn’t currently have a PRIMARY KEY constraint. Without a PRIMARY KEY
designated, a customer could be added twice mistakenly. Confusion could also result if
multiple customers have the same name—an order could be charged or shipped to the
wrong customer! The Customer# column is included in the CUSTOMERS table to assist in
uniquely identifying each customer. Adding a PRIMARY KEY constraint to the Customer#
column ensures that each row added is assigned a value that’s unique. Only one PRIMARY
KEY constraint can be defined for each table. To designate the Customer# column as the
primary key for the CUSTOMERS table, issue the ALTER TABLE command shown in
Figure 4-4. When the command executes, you get a success message, as shown.

Note the following elements in Figure 4-4:

• The ADD clause instructs Oracle 12c to add a constraint to the CUSTOMERS
table (listed after the ALTER TABLE keywords).

107

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• The user has chosen the constraint name, customers_customer#_pk, instead
of having Oracle 12c assign it.

• The PRIMARY KEY keywords designate the constraint type.

FIGURE 4-4 Adding a PRIMARY KEY constraint

How do you test constraints? Keep in mind that the purpose of constraints is to check
whether data values being entered are valid. So to test the constraint, you can attempt a row
insert with a duplicate or NULL Customer# value to verify that the primary key rejects the
row. You learn more about data manipulation in Chapter 5; however, in this chapter, you
execute basic inserts to test constraint enforcement. Figure 4-5 shows an INSERT statement
for adding a new customer to the CUSTOMERS table. This statement generates an error
because an existing customer row in the table already has the customer# 1020 assigned.

Constraint name reference

FIGURE 4-5 Insert a row to test the constraint

108

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Constraint violations display an error message referencing the constraint name, as
pointed out in Figure 4-5. Using a naming convention is quite helpful in evaluating the
cause of the error. Just by viewing the error message, you know what table, column, and
type of constraint are the issue. If you don’t assign constraint names, the error message
displays the system-generated constraint name, which isn’t as helpful.

Figure 4-6 shows a successful customer addition, using a customer# not yet in the
database.

FIGURE 4-6 Insert a new customer record

If the primary key consists of more than one column (a composite primary key), you
must create it at the table level in a CREATE TABLE statement. The ORDERITEMS table
requires a composite primary key because two columns are used to uniquely identify each
item on an order: Order# and Item#. To indicate that the primary key for a table consists
of more than one column, simply list the column names, separated by commas, in
parentheses after the constraint type. Figure 4-7 shows this format.

FIGURE 4-7 Adding a composite PRIMARY KEY constraint

109

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the constraint shown in Figure 4-7 is added to the ORDERITEMS table, all
entries in the Order# and Item# columns must create a unique combination in the table,
and neither column can contain a NULL value.

T I P

Because a table can have only one PRIMARY KEY constraint, some developers don’t include column
names in a PRIMARY KEY constraint. In this case, the constraint shown in Figure 4-7 might simply be
named orderitems_pk.

U S I N G T H E F O R E I G N K E Y C O N S T R A I N T

Suppose a new customer who doesn’t exist in the CUSTOMERS table places an order with JustLee
Books. If the customer information wasn’t collected, the customer’s name and billing address aren’t
stored in the database. Without this information, billing the customer for the order is difficult—not
exactly what you might consider a good business practice. Or perhaps a book in the BOOKS table
has the publisher ID 9—one that doesn’t exist in the PUBLISHER table. (It could simply be a typo,
or perhaps someone neglected to add this publisher to the PUBLISHER table.)

You can prevent these problems by using a FOREIGN KEY constraint. For example, to
prevent an order being entered from a customer who doesn’t have a record in the
CUSTOMERS table, you can create a constraint that compares any entry made in the
Customer# column of the ORDERS table with all customer numbers existing in the
CUSTOMERS table. If a customer service representative enters a customer number not found
in the CUSTOMERS table, the corresponding entry in the ORDERS table is rejected. This
constraint requires the customer service representative to collect and enter the customer’s
information in the CUSTOMERS table, and then enter the order in the ORDERS table.

The syntax to add a FOREIGN KEY constraint to a table is shown in Figure 4-8.

FIGURE 4-8 Syntax of the ALTER TABLE command to add a FOREIGN KEY constraint

The keywords FOREIGN KEY are used to identify a column that, if it contains a value,
must match data contained in another table. The name of the column identified as the
foreign key is placed inside parentheses after the FOREIGN KEY keywords. The
REFERENCES keyword refers to referential integrity, which means the user is referring
to something that exists in another table. For example, the value entered in the
Customer# column of the ORDERS table references a value in the Customer# column of
the CUSTOMERS table. The REFERENCES keyword is used to identify the table and
column that must already contain the data being entered. The column referenced must be
a primary key column. In this case, the Customer# column of the CUSTOMERS table
must be defined as this table’s primary key column.

110

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To create a FOREIGN KEY constraint on the Customer# column of the ORDERS table
that makes sure any customer number entered also exists in the CUSTOMERS table
before the order is accepted, use the command shown in Figure 4-9.

FIGURE 4-9 Adding a FOREIGN KEY constraint

This command instructs Oracle 12c to add a FOREIGN KEY constraint on the Customer#
column of the ORDERS table. The name chosen for the constraint is orders_customer#_fk.
This constraint makes sure an entry for the Customer# column of the ORDERS table matches
a value stored in the Customer# column of the CUSTOMERS table. When the command
executes, a message indicates the table was altered successfully, as shown in Figure 4-9. An
INSERT statement adding an order assigned to the customer# 2000 tests the FOREIGN KEY
constraint, as shown in Figure 4-10. The statement violates the constraint because the
customer# 2000 doesn’t exist in the referenced CUSTOMERS table.

FIGURE 4-10 Insert a row to test the constraint

111

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The syntax for the FOREIGN KEY constraint is more complex than for the PRIMARY
KEY constraint because two tables are involved in the constraint. The CUSTOMERS
table is the referenced table. It’s the “one” side of the one-to-many relationship between
the CUSTOMERS and ORDERS table, so each order can be placed by only one
customer, but one customer can place many orders. Therefore, the CUSTOMERS table
is considered the parent table for the constraint; the ORDERS table is considered the
child table.

When a FOREIGN KEY constraint exists between two tables, by default, a
record can’t be deleted from the parent table if matching entries exist in the child
table. This rule means that in the JustLee Books database, you can’t delete a customer
from the CUSTOMERS table if there are orders in the ORDERS table for
that customer.

However, suppose you do need to delete a customer from the CUSTOMERS
table. Perhaps the customer hasn’t paid for previous orders, or perhaps the customer
has passed away. Your goal is to remove the customer from the database to make
certain no one places an order with that customer’s information. The FOREIGN
KEY constraint requires first deleting all that customer’s orders from the ORDERS table
(the child table) and then deleting the customer from the CUSTOMERS table (the
parent table).

There’s an alternative method, however: You can add the keywords ON
DELETE CASCADE to the end of the command issued in Figure 4-9. If these
keywords are included in the constraint definition and a record is deleted from the
parent table, any corresponding records in the child table are also deleted
automatically. Figure 4-11 shows a FOREIGN KEY constraint with the ON DELETE
CASCADE option.

FIGURE 4-11 FOREIGN KEY constraint with the ON DELETE CASCADE option

N O T E

If you attempt the command shown in Figure 4-11 and get an error message, it might be because a
FOREIGN KEY constraint with the same name already exists. Enter the following command:

ALTER TABLE orders DROP CONSTRAINT orders_customer#_fk;

After you’ve removed the previous constraint from the database, you can then reenter the command in
Figure 4-11 without an error message.

112

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C A U T I O N

Using the example in Figure 4-11, if a customer who has placed 20 orders is deleted from the
CUSTOMERS table, all orders that customer placed are deleted from the ORDERS table along with the
customer record. Clearly, you must be cautious with the ON DELETE CASCADE option. It could create
a problem for unsuspecting users who delete outstanding orders unintentionally. Make absolutely certain
that any records that might get deleted from the child table with this option won’t be needed in the
future. If that possibility exists—even remotely—don’t include the ON DELETE CASCADE keywords,
and force the user to delete the entries in the child table explicitly before removing the parent record.

If a record in a child table has a NULL value for a column that has a FOREIGN KEY
constraint, the record is accepted. This constraint ensures only that the customer number is a
valid number, not that a customer number has been entered for an order. Basically, this
means an order could be entered into the ORDERS table without an entry in the Customer#
column, and the order is still accepted. To force the user to enter a customer number for an
order, you should also add a NOT NULL constraint for the Customer# column in the ORDERS
table. (You add this constraint later in “Using the NOT NULL Constraint.”)

N O T E

A FOREIGN KEY constraint can’t reference a column in a table that has not been designated as the
primary key for the referenced table.

Occasionally, a table is created with two columns that are related. For example, the
referred column in the CUSTOMERS table records a customer#, which must be a valid
customer# from the Customer# column in the same table. A FOREIGN KEY constraint
can enforce the relationship between two columns in the same table. Keep in mind that
the Customer# column is the PRIMARY KEY constraint column of the CUSTOMERS table,
so the FOREIGN KEY constraint references a PRIMARY KEY column. Figure 4-12 shows
the statement to add this FOREIGN KEY constraint.

FIGURE 4-12 FOREIGN KEY constraint using columns in the same table

113

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A FOREIGN KEY constraint is unlike the other constraints, in that it typically involves
more than one table. Because a FOREIGN KEY can affect more than one table, it can affect
a DROP TABLE command on the parent table of the relationship established by the
constraint. For example, you just created a FOREIGN KEY constraint relating the
CUSTOMERS and ORDERS tables. If you attempt to delete the parent table (CUSTOMERS),
an error referencing the FOREIGN KEY is raised, as shown in Figure 4-13.

FIGURE 4-13 DROP TABLE error caused by a FOREIGN KEY

Two options are available to allow deleting the parent table:

• DROP the child table and then DROP the parent table.
• DROP the parent table with the CASCADE CONSTRAINTS option, as shown

in Figure 4-14. This option deletes the FOREIGN KEY constraint in the child
table and then deletes the parent table.

FIGURE 4-14 Using the CASCADE CONSTRAINTS option

114

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

U S I N G T H E U N I Q U E C O N S T R A I N T

The purpose of a UNIQUE constraint is to ensure that two records can’t have the same
value stored in the same column. Although this constraint sounds like a PRIMARY KEY
constraint, there’s one major difference. A UNIQUE constraint allows NULL values,
which aren’t permitted with a PRIMARY KEY constraint. Therefore, the UNIQUE
constraint performs a check on the data only if a value is entered for the column.
Figure 4-15 shows the syntax to add a UNIQUE constraint to an existing table.

FIGURE 4-15 Syntax for adding a UNIQUE constraint to a table

As shown in Figure 4-15, the syntax to add a UNIQUE constraint is the same as the
syntax for adding a PRIMARY KEY constraint, except the UNIQUE keyword is used to
indicate the type of constraint being created.

For example, JustLee Books wants to make certain each book in inventory has a
different title entry to help customers and employees differentiate books with titles that
are, in fact, the same. The company could add subject or author information at the end of
the title so that customers don’t accidentally select the wrong book to purchase. To create
a UNIQUE constraint on the Title column of the BOOKS table, issue the command shown
in Figure 4-16.

FIGURE 4-16 Adding a UNIQUE constraint

After the command is issued successfully, Oracle 12c doesn’t allow any entry in the
Title column of the BOOKS table that duplicates an existing entry. If multiple books have
the same title, some modification is now required to differentiate the titles of the two
books. For example, if a second edition of a book is published with the same title as the

115

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

first edition, the user must include the edition number in the title to make it different
from the record for the previous edition. Figure 4-17 displays an INSERT command
attempting to add a book row with the title Shortest Poems. A book with this same title
already exists in the BOOKS table, so the INSERT command fails because of a UNIQUE
KEY constraint violation.

FIGURE 4-17 Insert a row to test the constraint

U S I N G T H E C H E C K C O N S T R A I N T

This chapter’s introduction used an example in which an order’s ship date was earlier
than its order date. You can prevent data entry errors of this type by using a CHECK
constraint. A CHECK constraint requires that a specific condition be met before a
record is added to a table. With a CHECK constraint, you can, for example, make
certain a book’s cost is greater than zero, its retail price is less than $200.00, or a
seller’s commission rate is less than 50%. The condition included in the constraint can’t
reference certain built-in functions, such as SYSDATE, or refer to values stored in other
rows (although it can be compared to values in the same row). For instance, you could
use the condition that the order date must be earlier than or equal to the ship date.
However, you couldn’t add a CHECK constraint that requires an order’s ship date to be
the same as the current system date because you would have to reference the SYSDATE
function. Figure 4-18 shows the syntax for adding a CHECK constraint to an existing
table.

116

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 4-18 Syntax for adding a CHECK constraint to an existing table

N O T E

The SYSDATE function was introduced in Chapter 3. Other functions are covered in Chapter 10.

The syntax to add a CHECK constraint follows the same format as the syntax to add a
PRIMARY KEY or UNIQUE constraint. However, rather than list column names for the
constraint, you list the condition that must be satisfied.

To solve the problem of an incorrect ship date being entered in the table, the
condition can be stated as (orderdate <¼ shipdate), which means the ship date can’t be
earlier than the order date. The command to add the CHECK constraint to the ORDERS
table is shown in Figure 4-19.

FIGURE 4-19 Adding a CHECK constraint to the ORDERS table

If any records already stored in the ORDERS table violate the orderdate <¼ shipdate
condition, Oracle 12c returns an error message stating that the constraint has been
violated, and the ALTER TABLE command fails. This is true for all constraint types. If you
attempt to add a CHECK constraint and get an error message indicating a violation, issue
a SELECT statement and review the table’s data to identify any records preventing the
constraint from being added to the table. After you identify and correct those records, you
can reissue the ALTER TABLE command, and it should be successful. The INSERT
statement in Figure 4-20 attempts to add an order with a shipping date of one day earlier
than the order date and fails.

117

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can use a variety of operators to create the condition needed for your data. The
following list shows each operator with an example:

• Less than (<): retail < 200
• Greater than (>): cost > 0
• Range (BETWEEN): retail BETWEEN 0 AND 200
• List of values (IN): region IN ('NE', 'SE', 'NW', 'SW')

T I P

The BETWEEN operator is inclusive. The preceding example is interpreted as the retail column value
could be 0 or 200 or any number between those two values.

FIGURE 4-20 Insert a row to test the constraint

Another CHECK constraint is needed in the JustLee database to make sure the
quantity of an item ordered is at least one. Figure 4-21 shows adding a CHECK constraint
to address this requirement. The condition in this constraint could also be written as
(quantity >¼ 1).

118

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 4-21 Adding a CHECK constraint to the ORDERITEMS table

U S I N G T H E N O T N U L L C O N S T R A I N T

The NOT NULL constraint is a special CHECK constraint with the condition IS NOT
NULL. It prevents users from adding a row that contains a NULL value in the specified
column. However, a NOT NULL constraint isn’t added to a table in the same manner as
the other constraints discussed in this chapter. A NOT NULL constraint can be added
only to an existing column by using the ALTER TABLE … MODIFY command. The
syntax for adding a NOT NULL constraint is shown in Figure 4-22.

FIGURE 4-22 Syntax for adding a NOT NULL constraint to an existing table

The ALTER TABLE … MODIFY command is the same command used in Chapter 3 to
redefine a column. You need to list just the column’s name and the keywords NOT NULL.
You don’t have to list the column’s datatype and width or any default value, if one exists.
For example, earlier in the chapter, you added a FOREIGN KEY constraint on the
Customer# column in the ORDERS table; however, this column still accepts a NULL
value. To force the entry of a value for the Customer#, a NOT NULL constraint must be
added to the Customer# column of the ORDERS table. Figure 4-23 shows the command
and its successful execution.

119

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 4-23 Adding a NOT NULL constraint

To test the NOT NULL constraint, add a row to the ORDERS table using a NULL value
for the Customer# column, as shown in Figure 4-24.

Notice that the error message doesn’t reference the NOT NULL constraint name, as
with the other constraint types. The error message, however, is clear about the problem,
including the identification of the specific table and column. For this reason, many
developers don’t assign constraint names to this type of constraint (although assigning a
name makes referencing the constraint easier if you ever need to delete it in the future).
If you don’t want to assign a name to a NOT NULL constraint, simply omit the
CONSTRAINT keyword and list the constraint type directly after the column name, as
shown in Figure 4-25.

N O T E

The DESC command used in Chapter 3 identifies all columns that are NOT NULL or require
input, including columns with PRIMARY KEY and NOT NULL constraints. Methods for
identifying all the constraints for a table are explained in “Viewing Constraint Information” later
in this chapter.

120

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 4-24 Insert a row to test the constraint

FIGURE 4-25 Adding a NOT NULL constraint without a name

I N C L U D I N G C O N S T R A I N T S D U R I N G T A B L E
C R E A T I O N

Now that you’ve examined adding constraints to existing tables, take a look at adding
constraints to tables during table creation. When the design process for a database is
thorough, you identify all needed constraints before creating a table. In this case, the
constraints can be included in the CREATE TABLE command, so they don’t need to be
added later as a separate step.

JustLee Books would like to create some new tables to store office equipment
inventory data. Figure 4-26 shows a basic E-R model for three tables to maintain the office
equipment inventory, including the needed columns and relationship lines. The
underlined columns uniquely identify each row in the associated table.

121

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EQUIP

DEPT
ETYPES

DeptID
Dname
Fax

EquipID
Edesc
Purchdate
Rating
DeptID
EtypeID

EtypeID
Etypename

FIGURE 4-26 E-R model for equipment tables

After analyzing the data requirements, the following list of requirements, which will
be addressed with constraints, was developed:

• Each department name must be unique.
• Each department must be assigned a name.
• Each equipment type name must be unique.
• Each equipment type must be assigned a name.
• Each equipment item must be assigned a valid department.
• If an equipment item is assigned a type, it must be a valid type.
• Valid rating values for equipment are A, B, and C.

As mentioned, you can use two approaches to define constraints: at the column level
or at the table level. If a constraint is defined at the table level, it’s added to the CREATE
TABLE statement following all the column definitions. All constraints except the NOT
NULL constraint can be defined at the table level.

Next, review the completed CREATE TABLE statements for the three equipment
tables. The JustLee technology group uses a convention of assigning names to all
constraints except NOT NULL constraints. Figures 4-27 to 4-29 show the complete
CREATE TABLE statements for all three tables, including all constraints.

FIGURE 4-27 DEPT table creation

122

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C A U T I O N

If you use the SCOTT user schema created during an Oracle install, you might get an error with the
command in Figure 4-27. The SCOTT schema contains several tables after installation, including one
named DEPT. To run the CREATE TABLE statement in Figure 4-27 successfully, you need to remove
this existing DEPT table by using the DROP command.

FIGURE 4-28 ETYPES table creation

FIGURE 4-29 EQUIP table creation

123

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that all constraints except NOT NULL are listed at the bottom of the CREATE
TABLE statement. Also, the EQUIP table includes two FOREIGN KEY constraints, one for
each relationship line shown in the E-R model. These constraints meet the requirement
that each equipment item is assigned valid DeptID and EtypeID values. If a constraint is
created at the column level as part of the CREATE TABLE command, the constraint type
is simply listed after the datatype for the column. Figure 4-30 modifies the CREATE
TABLE statement for the DEPT table so that all constraints are defined at the column
level. Compare this statement to the one in Figure 4-27, which uses the table level style.
Both CREATE TABLE statements build the same table; they differ only in the style of
statement.

FIGURE 4-30 Constraints defined at the column level

Both the column-level and table-level approaches can be used in the same command.
However, the general practice in the industry is to create constraints with the table-level
approach. This isn’t a requirement; it’s simply a preference because a column list can
become cluttered if a constraint name is entered in the middle of a list defining all the
columns. Therefore, most users define all the columns first, and then include the
constraints at the end of the CREATE TABLE command to separate the column
definitions from the constraints. This style makes it much easier to go back and identify a
problem if you get an error message.

You can create all the constraints without assigning names; however, doing so
complicates interpreting error messages, as discussed earlier. The statement shown in
Figure 4-31 creates the DEPT table with the three required constraints. Because the
statement doesn’t assign constraint names, Oracle assigns names to all the constraints.

FIGURE 4-31 Constraints with no names assigned

As you apply constraints to tables, keep the following guidelines in mind:

• A NOT NULL constraint shouldn’t be assigned to a PRIMARY KEY column. A
PRIMARY KEY enforces both NOT NULL and UNIQUE constraints.

124

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• CHECK, FOREIGN KEY, and UNIQUE KEY constraints don’t require a value.
A NOT NULL constraint must be used along with these constraints to require
input for a column.

• If a DEFAULT option is set for a column, a NOT NULL constraint shouldn’t
be used. If no value is provided for the column, the DEFAULT value is
assigned.

T I P

A common error is assigning a NOT NULL constraint to a PRIMARY KEY column. This assignment
doesn’t generate an error message, but it duplicates processing because a PRIMARY KEY constraint
doesn’t allow NULL values. Recall that a PRIMARY KEY checks for both uniqueness and no NULL
values.

A D D I N G M U L T I P L E C O N S T R A I N T S O N A
S I N G L E C O L U M N

You can assign a column as many constraints as needed to satisfy all the business rules for
that column. For example, you created a CHECK constraint on the Quantity column of
the ORDERITEMS table earlier, but this constraint might not be enough. To enter a new
order item, a quantity is required, so the column also needs a NOT NULL constraint. You
also added a composite PRIMARY KEY constraint to the ORDERITEMS table that included
the Order# and Item#. The Order# must also be assigned a FOREIGN KEY constraint that
references the ORDERS table to make sure a valid Order# is entered. Figure 4-32 shows
the CREATE TABLE statement for the ORDERITEMS table that includes these
constraints. Notice that both the Quantity and Order# columns have two constraints
assigned.

FIGURE 4-32 Assigning multiple constraints to a column

125

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

A NOT NULL constraint isn’t required for the Order# column because it’s part of the PRIMARY KEY
constraint.

V I E W I N G C O N S T R A I N T I N F O R M A T I O N

So far in this chapter, you have learned various ways to create different types of
constraints. How do you verify what constraints exist? The USER_CONSTRAINTS view,
which is part of the data dictionary, is used to identify existing constraints. For example,
you want to display information about all the constraints created earlier for the EQUIP
table. To view the portion of the data dictionary that references constraints, use the
SELECT statement shown in Figure 4-33 to see information about all constraints on the
EQUIP table.

FIGURE 4-33 SELECT statement to view data about existing constraints

In the results, note the columns listed:

• The first column referenced, Constraint_name, lists the name of any
constraint in the EQUIP table. Notice that the NOT NULL constraint has a
system-generated constraint name.

• The second column, Constraint_type, lists the following letters: P for a
PRIMARY KEY constraint, C for a CHECK or NOT NULL constraint, U for a
UNIQUE constraint, or R for a FOREIGN KEY constraint.

126

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T I P

The R might seem a little strange for a FOREIGN KEY constraint; however, the purpose of this
constraint is to ensure referential integrity—meaning you’re referencing something that actually exists.
Therefore, the assigned code is the letter R.

• The third column, Search_condition, is used to display the condition in a
CHECK or NOT NULL constraint. This column is blank for any other types of
constraints.

• The fourth column, R_constraint_name, provides the name of the PRIMARY
KEY constraint on the column that a FOREIGN KEY references.

The USER_CONSTRAINTS data dictionary view provides most of the information
needed to confirm all the constraint settings for a table. It doesn’t, however, include the
specific column name the constraint is assigned to. Well-formed constraint names help
identify the column, but the actual column name isn’t displayed in this view. The
USER_CONS_COLUMNS data dictionary view lists column names and assigned
constraints, as shown in Figure 4-34.

FIGURE 4-34 USER_CONS_COLUMNS data dictionary view

127

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

D I S A B L I N G A N D D R O P P I N G C O N S T R A I N T S

Sometimes you want to temporarily disable or drop a constraint. In this section, you
examine these options.

Using DISABLE/ENABLE
When a constraint exists for a column, each entry made to that column is evaluated to determine
whether the value is allowed in that column (that is, it doesn’t violate the constraint). If you’re
adding a large block of data to a table, this validation process can severely slow down the Oracle
server’s processing speed. If you’re certain the data you’re adding adheres to the constraints, you
can disable the constraints while adding that particular block of data to the table.

To DISABLE a constraint, you issue an ALTER TABLE command and change the
constraint’s status to DISABLE. Later, you can reissue the ALTER TABLE command and
change the constraint’s status back to ENABLE. Figure 4-35 shows the syntax for using
the ALTER TABLE command to change the status of a constraint.

FIGURE 4-35 Syntax to disable or enable an existing constraint

For example, you’re about to load several hundred rows into the EQUIP table from a
file prepared after completing an initial inventory of office equipment. If the file was
prepared so that only a rating value of A, B, or C could be entered in the file, you already
know the rating data already meets the condition in the CHECK constraint on this
column. To speed up the data load, the simplest solution is to disable, or turn off, the
constraint temporarily, and then enable it when you’re finished, as shown in Figure 4-36.

FIGURE 4-36 Disabling and enabling constraints

128

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To instruct Oracle 12c to begin enforcing the constraint again, issue the same
statement with the keyword ENABLE rather than DISABLE. After the constraint is
enabled, data added or modified is again checked by the constraint.

Dropping Constraints
If you create a constraint and then decide it’s no longer needed (or you find an error in the
constraint), you can delete the constraint from the table with the DROP (constraintname)
command. In addition, if you need to change or modify a constraint, your only option is to
delete the constraint and then create a new one. You use the ALTER TABLE command to
drop an existing constraint from a table, using the syntax shown in Figure 4-37.

FIGURE 4-37 Syntax of the ALTER TABLE command to delete a constraint

Note the following guidelines for the syntax shown in Figure 4-37:

• The DROP clause varies depending on the type of constraint being deleted. If
the DROP clause references the PRIMARY KEY constraint for the table, using
the keywords PRIMARY KEY is enough because only one such clause is
allowed for each table in the database.

• To delete a UNIQUE constraint, only the column name affected by the constraint
is required because a column is referenced by only one UNIQUE constraint.

• Any other type of constraint must be referenced by the constraint’s actual
name—regardless of whether the constraint name is assigned by a user or the
Oracle server.

Figure 4-38 shows a statement that drops the CHECK constraint on the Rating column
of the EQUIP table.

FIGURE 4-38 Dropping a NOT NULL constraint by name

129

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If this ALTER TABLE command is executed successfully, the constraint no longer
exists, and any value is accepted as input to the column.

The FOREIGN KEY constraint raises a special concern when attempting to drop
constraints because it involves a relationship between two tables. Recall that a FOREIGN
KEY column references a PRIMARY KEY column of another table. If you attempt to drop
the PRIMARY KEY, an error is raised indicating that a FOREIGN KEY reference exists, as
shown in Figure 4-39.

FIGURE 4-39 Error dropping a PRIMARY KEY referenced by a FOREIGN KEY

If needed, the associated FOREIGN KEY can be deleted along with the PRIMARY KEY
deletion by using the CASCADE option, as shown in Figure 4-40.

FIGURE 4-40 Dropping a PRIMARY KEY referenced by a FOREIGN KEY by using a CASCADE option

130

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• A constraint is a rule applied to data being added to a table. It represents business
rules, policies, or procedures. Data violating the constraint isn’t added to the table.

• A constraint can be included during table creation as part of the CREATE TABLE
command or added to an existing table with the ALTER TABLE command.

• A constraint based on composite columns (more than one column) must be
created by using the table-level approach.

• A NOT NULL constraint can be created only with the column-level approach.
• A PRIMARY KEY constraint doesn’t allow duplicate or NULL values in the

designated column.
• Only one PRIMARY KEY constraint is allowed in a table.
• A FOREIGN KEY constraint requires that the column entry match a referenced

column entry in the table or be NULL.
• A UNIQUE constraint is similar to a PRIMARY KEY constraint, except it allows

storing NULL values in the specified column.
• A CHECK constraint ensures that data meets a given condition before it’s added

to the table. The condition can’t reference the SYSDATE function or values stored
in other rows.

• A NOT NULL constraint is a special type of CHECK constraint. If you’re adding to
an existing column, the ALTER TABLE … MODIFY command must be used.

• A column can be assigned multiple constraints.
• The data dictionary views USER_CONSTRAINTS and USER_CONS_COLUMNS

enable you to verify existing constraints.
• A constraint can be disabled or enabled with the ALTER TABLE command and

the DISABLE and ENABLE keywords.
• A constraint can’t be modified. To change a constraint, you must first drop it with

the DROP command and then re-create it.

Chapter 4 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Constraint Description Example

PRIMARY KEY Determines which column(s)
uniquely identifies each
record. The primary key
can’t be NULL, and the data
values must be unique.

Constraint created during table creation:
CREATE TABLE newtable
(firstcol NUMBER PRIMARY KEY,
secondcol VARCHAR2(20));

or
CREATE TABLE newtable
(firstcol NUMBER,
secondcol VARCHAR2(20),

131

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Constraint Description Example

CONSTRAINT constraint name_pk
PRIMARY KEY (firstcol));

Constraint created after table creation:
ALTER TABLE newtable
ADD CONSTRAINT constraint_name_pk
PRIMARY KEY (firstcol);

FOREIGN KEY In a one-to-many relation-
ship, the constraint is added
to the “many” table. The
constraint ensures that if a
value is entered in the
specified column, it exists
in the table being referred
to, or the row isn’t added.

Constraint created during table creation:
CREATE TABLE newtable
(firstcol NUMBER,
secondcol VARCHAR2(20)

REFERENCES anothertable (coll));
or
CREATE TABLE newtable
(firstcol NUMBER,
secondcol VARCHAR2(20),

CONSTRAINT constraint_name_fk
FOREIGN KEY (secondcol)

REFERENCES anothertable (coll);

Constraint created after table creation:
ALTER TABLE newtable
ADD CONSTRAINT constraint name_fk
FOREIGN KEY (secondcol)

UNIQUE Ensures that all data values
stored in the specified
column are unique. The
UNIQUE constraint differs
from the PRIMARY KEY
constraint in that it allows
NULL values.

Constraint created during table creation:
CREATE TABLE newtable
(firstcol NUMBER,
secondcol VARCHAR2(20) UNIQUE);

or
CREATE TABLE newtable
(firstcol NUMBER,
secondcol VARCHAR2(20),
CONSTRAINT constraint_name_uk
UNIQUE (secondcol));

Constraint created after table creation:
ALTER TABLE newtable
ADD CONSTRAINT constraint_name_uk
UNIQUE (secondcol);

CHECK Ensures that a specified con-
dition is met before the data
value is added to the table.

Constraint created during table creation:
CREATE TABLE newtable
(firstcol NUMBER,
secondcol VARCHAR2(20),
thirdcol NUMBER CHECK (BETWEEN 20
AND 30));

132

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Review Questions

To answer these questions, refer to the tables in the JustLee Books database.

1. What is the difference between a PRIMARY KEY constraint and a UNIQUE constraint?

2. How can you verify the constraints that exist for a table?

3. A table can have a maximum of how many PRIMARY KEY constraints?

4. Which type of constraint can be used to make certain the category for a book is included
when a new book is added to inventory?

5. Which type of constraint should you use to ensure that every book has a profit margin
between 15% and 25%?

6. How is adding a NOT NULL constraint to an existing table different from adding other types
of constraints?

7. When must you define constraints at the table level rather than the column level?

8. To which table do you add a FOREIGN KEY constraint if you want to make certain every
book ordered exists in the BOOKS table?

9. What is the difference between disabling a constraint and dropping a constraint?

10. What is the simplest way to determine whether a particular column can contain NULL
values?

Constraint Description Example

For example, an order’s ship
date can’t be “less than” its
order date.

or
CREATE TABLE newtable
(firstcol NUMBER,
seconded VARCHAR2(20),
thirdcol NUMBER,

CONSTRAINT constraint_name_ck CHECK
(thirdcol BETWEEN 20 AND 80));

Constraint created after table creation:
ALTER TABLE newtable
ADD CONSTRAINT constraint_name_ck
CHECK (thirdcol BETWEEN 20 AND 80);

NOT NULL Requires that the specified
column can’t contain a NULL
value. It can be created only
with the column-level
approach to table creation.

Constraint created during table creation:
CREATE TABLE newtable
(firstcol NUMBER,
secondcol VARCHAR2(20),
thirdcol NUMBER NOT NULL);

Constraint created after table creation:
ALTER TABLE newtable
MODIFY (thirdcol NOT NULL);

133

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multiple Choice

To answer the following questions, refer to the tables in the JustLee Books database.

1. Which of the following statements is correct?

a. A PRIMARY KEY constraint allows NULL values in the primary key column(s).

b. You can enable a dropped constraint if you need it in the future.

c. Every table must have at least one PRIMARY KEY constraint, or Oracle 12c doesn’t
allow the table to be created.

d. None of the above statements is correct.

2. Which of the following is not a valid constraint type?

a. PRIMARY KEYS

b. UNIQUE

c. CHECK

d. FOREIGN KEY

3. Which of the following SQL statements is invalid and returns an error message?

a. ALTER TABLE books ADD CONSTRAINT books_pubid_uk UNIQUE (pubid);

b. ALTER TABLE books ADD CONSTRAINT books_pubid_pk PRIMARY KEY (pubid);

c. ALTER TABLE books ADD CONSTRAINT books_pubid_nn NOT NULL (pubid);

d. ALTER TABLE books ADD CONSTRAINT books_pubid_fk FOREIGN KEY (pubid)

REFERENCES publisher (pubid);

e. All of the above statements are invalid.

4. What is the maximum number of PRIMARY KEY constraints allowed for a table?

a. 1

b. 2

c. 30

d. 255

5. Which of the following is a valid SQL command?

a. ALTER TABLE books ADD CONSTRAINT UNIQUE (pubid);

b. ALTER TABLE books ADD CONSTRAINT PRIMARY KEY (pubid);

c. ALTER TABLE books MODIFY (pubid CONSTRAINT NOT NULL);

d. ALTER TABLE books ADD FOREIGN KEY CONSTRAINT (pubid) REFERENCES

publisher (pubid);

e. None of the above commands is valid.

6. How many NOT NULL constraints can be created at the table level by using the CREATE
TABLE command?

a. 0

b. 1

c. 12

d. 30

e. 255

134

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. The FOREIGN KEY constraint should be added to which table?

a. the table representing the "one" side of a one-to-many relationship

b. the parent table in a parent-child relationship

c. the child table in a parent-child relationship

d. the table that doesn’t have a primary key

8. What is the maximum number of columns you can define as a primary key when using the
column-level approach to creating a table?

a. 0

b. 1

c. 30

d. 255

9. Which of the following commands can you use to rename a constraint?

a. RENAME

b. ALTER CONSTRAINT

c. MOVE

d. NEW NAME

e. None of the above commands can be used.

10. Which of the following is a valid SQL statement?

a. CREATE TABLE tablel

(col1 NUMBER PRIMARY KEY,
col2 VARCHAR2(20) PRIMARY KEY,
col3 DATE DEFAULT SYSDATE,
col4 VARCHAR2(2));

b. CREATE TABLE tablel

(col1 NUMBER PRIMARY KEY,
col2 VARCHAR2(20),
col3 DATE,
col4 VARCHAR2 (2) NOT NULL,
CONSTRAINT tablel_col3_ck
CHECK (col3=SYSDATE));

c. CREATE TABLE tablel
(col1 NUMBER,
col2 VARCHAR2(20),
col3 DATE,
col4 VARCHAR2(2),
PRIMARY KEY (coll));

d. CREATE TABLE tablel

(coll NUMBER,
col2 VARCHAR2(20),
col3 DATE DEFAULT SYSDATE,
col4 VARCHAR2(2);

135

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. In the initial creation of a table, if a UNIQUE constraint is included for a composite column
that requires the combination of entries in the specified columns to be unique, which of the
following statements is correct?

a. The constraint can be created only with the ALTER TABLE command.

b. The constraint can be created only with the table-level approach.

c. The constraint can be created only with the column-level approach.

d. The constraint can be created only with the ALTER TABLE … MODIFY command.

12. Which type of constraint should you use on a column to allow entering only values above 100?

a. PRIMARY KEY

b. UNIQUE

c. CHECK

d. NOT NULL

13. Which of the following commands can be used to enable a disabled constraint?

a. ALTER TABLE … MODIFY

b. ALTER TABLE … ADD

c. ALTER TABLE … DISABLE

d. ALTER TABLE … ENABLE

14. Which of the following keywords allows the user to delete a record from a table, even if
rows in another table reference the record through a FOREIGN KEY constraint?

a. CASCADE

b. CASCADE ON DELETE

c. DELETE ON CASCADE

d. DROP

e. ON DELETE CASCADE

15. Which of the following data dictionary objects should be used to view information about the
constraints in a database?

a. USER_TABLES

b. USER_RULES

c. USER_COLUMNS

d. USER_CONSTRAINTS

e. None of the above objects should be used.

16. Which of the following types of constraints can’t be created at the table level?

a. NOT NULL

b. PRIMARY KEY

c. CHECK

d. FOREIGN KEY

e. None of the above constraints can be created at the table level.

136

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17. Suppose you created a PRIMARY KEY constraint at the same time you created a table and
later decide to name the constraint. Which of the following commands can you use to
change the constraint’s name?

a. ALTER TABLE … MODIFY

b. ALTER TABLE … ADD

c. ALTER TABLE … DISABLE

d. None of the above commands can be used.

18. You’re creating a new table consisting of three columns: Col1, Col2, and Col3. Col1 should be
the primary key and can’t have any NULL values, and each entry should be unique. Col3 must
not contain any NULL values either. How many total constraints do you have to create?

a. 1

b. 2

c. 3

d. 4

19. Which of the following types of restrictions can be viewed with the DESCRIBE command?

a. NOT NULL

b. FOREIGN KEY

c. UNIQUE

d. CHECK

20. Which of the following is the valid syntax for adding a PRIMARY KEY constraint to an
existing table?

a. ALTER TABLE tablename ADD CONSTRAINT PRIMARY KEY (columnname);

b. ALTER TABLE tablename ADD CONSTRAINT (columnname) PRIMARY KEY

constraintname;

c. ALTER TABLE tablename ADD [CONSTRAINT constraintname] PRIMARY KEY;

d. None of the above is valid syntax.

Hands-On Assignments

JustLee Books has become the exclusive distributor for a number of books. The company now
needs to assign sales representatives to retail bookstores to handle the new distribution duties.
For these assignments, create new tables to support the following:

1. Modify the following SQL command so that the Rep_ID column is the PRIMARY KEY for
the table and the default value of Y is assigned to the Comm column. (The Comm column
indicates whether the sales representative earns commission.)

CREATE TABLE store_reps

(rep_ID NUMBER(5),

last VARCHAR2(15),

first VARCHAR2(10),

comm CHAR(1));

137

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Change the STORE_REPS table so that NULL values can’t be entered in the name
columns (First and Last).

3. Change the STORE_REPS table so that only a Y or N can be entered in the Comm
column.

4. Add a column named Base_salary with a datatype of NUMBER(7,2) to the STORE_REPS
table. Ensure that the amount entered is above zero.

5. Create a table named BOOK_STORES to include the columns listed in the following chart.

6. Add a constraint to make sure the Rep_ID value entered in the BOOK_STORES table is a
valid value contained in the STORE_REPS table. The Rep_ID columns of both tables were
initially created as different datatypes. Does this cause an error when adding the
constraint? Make table modifications as needed so that you can add the required
constraint.

Column Name Datatype Constraint Comments

Store_ID NUMBER(8) PRIMARY KEY column

Name VARCHAR2(30) Should be UNIQUE and NOT NULL

Contact VARCHAR2(30)

Rep_ID VARCHAR2(5)

7. Change the constraint created in Assignment #6 so that associated rows of the
BOOK_STORES table are deleted automatically if a row in the STORE_REPS table is
deleted.

8. Create a table named REP_CONTRACTS containing the columns listed in the following
chart. A composite PRIMARY KEY constraint including the Rep_ID, Store_ID, and Quarter
columns should be assigned. In addition, FOREIGN KEY constraints should be assigned to
both the Rep_ID and Store_ID columns.

Column Name Datatype

Store_ID NUMBER(8)

Name NUMBER(5)

Quarter CHAR(3)

Rep_ID NUMBER(5)

9. Produce a list of information about all existing constraints on the STORE_REPS table.

10. Issue the commands to disable and then enable the CHECK constraint on the Base_salary
column.

138

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Advanced Challenge

Create two tables based on the E-R model shown in Figure 4-41 and the business rules in the
following list for a work order tracking database. Include all the constraints in the CREATE
TABLE statements. You should have only two CREATE TABLE statements and no ALTER
TABLE statements. Name all constraints except NOT NULLs.

Project Workorders

Proj#
P_name
P_desc
P_budget

Wo#
Proj#
Wo_desc
Wo_assigned
Wo_hours
Wo_start
Wo_due
Wo_complete

Will hold a name for the
person assigned

Will hold a Y or N

Dates

FIGURE 4-41 Workorders E-R model

• Use your judgment for column datatypes and sizes.
• Proj# and Wo# are used to uniquely identify rows in these tables.
• Each project added must be assigned a name, and no duplicate project names

are allowed.
• Each work order must be assigned to a valid project when added and be assigned

a description and number of hours.
• Each work order added must have a different description.
• The number of hours assigned to a work order should be greater than zero.
• If data is provided for the Wo_complete column, only Y or N are acceptable values.

Create and execute the SQL statements needed to enforce the data relationships among
these tables.

Case Study: City Jail

In previous chapters, you have designed and created tables for the City Jail database. These
tables don’t include any constraints. Review the information in Chapters 1 and 3 case studies to
determine what constraints you might need for the City Jail database.

First, using the format in the following chart, create a list of constraints needed. Second,
create and execute all the SQL statements needed to add these constraints. Follow these steps
to create and alter the tables:

1. First, drop the APPEALS, CRIME_OFFICERS, and CRIME_CHARGES tables constructed
in Chapter 3. These three tables are to be built last, using a CREATE TABLE command
that includes all the necessary constraints.

139

Constraints

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Second, use the ALTER TABLE command to add all constraints to the existing tables. Note
that the sequence of constraint addition has an impact. Any tables referenced by FOREIGN
KEYs must already have the PRIMARY KEY created.

3. Third, use the CREATE TABLE command, including all constraints, to build the three tables
dropped in the first step.

Table Name Column(s) Constraint Type Condition

140

Chapter 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R5
DATA MANIPULATION AND
TRANSACTION CONTROL

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Use the INSERT command to add a record to an existing table

• Manage virtual columns in data manipulations

• Use quotes in data values

• Use a subquery to copy records from an existing table

• Use the UPDATE command to modify a table’s existing rows

• Use substitution variables with an UPDATE command

• Delete records

• Manage transactions with the transaction control commands COMMIT,
ROLLBACK, and SAVEPOINT

• Differentiate between a shared lock and an exclusive lock

• Use the SELECT … FOR UPDATE command to create a shared lock

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

In Chapters 3 and 4, you issued data definition language (DDL) commands to create, alter,
and drop database tables. You also used basic INSERT commands to add table data rows to
test table constraints. This chapter delves further into methods for adding new data rows and
introduces modifying or deleting existing data rows. All the operations performed in this
chapter differ from DDL statements in that they affect the data stored in tables, not the actual
structure of tables. Commands that modify data are called data manipulation language
(DML) commands. Commands that save data permanently or undo data changes are referred
to as transaction control commands. Table 5-1 lists the commands you use in this chapter.

TABLE 5-1 DML and Transaction Control Commands

Command Description

INSERT Adds new rows to a table; can include a subquery to copy rows from an existing table

UPDATE Adds data to, or modifies data in, existing rows

DELETE Removes rows from a table

COMMIT Saves changed data in a table permanently

ROLLBACK Allows “undoing” uncommitted changes to data

SAVEPOINT Enables setting markers in a transaction

LOCK TABLE Prevents other users from making changes to a table

SELECT …

FOR UPDATE
Creates a shared lock on a table to prevent another user from making changes to data
in specified columns

D A T A B A S E P R E P A R A T I O N

Go to the Chapter 5 folder in your data files. Before working through the examples in this chapter, run
the JLDB_Build_5.sql script to ensure that all necessary tables and constraints are available. This script
removes existing tables and creates a new set of tables. Refer to the steps at the beginning of Chapter 2
for loading and executing a script. Ignore any errors in the DROP TABLE statements at the beginning of
the script. An “object does not exist” error merely indicates that the table wasn’t created in the schema
previously.

N O T E

The JLDB_Build_5.sql script includes creating a table named ACCTMANAGER, as shown in Figure 5-1.
Review the table structure, including datatypes, constraints, and DEFAULT options. The ACCTMANAGER
table is used throughout this chapter for DML tasks. It currently contains no data rows.

142

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-1 The ACCTMANAGER table creation

I N S E R T I N G N E W R O W S

As discussed in Chapter 3, the management of JustLee Books is implementing a new
commission policy for regional account managers. The ACCTMANAGER table was created
to store data about account managers. Now that the table has been created and all
necessary constraints for the table are in place, it’s time to add data to the table. The data
shown in Table 5-2 is for account managers you add to the ACCTMANAGER table in the
next section. (Blank spaces indicate that data hasn’t been provided yet.)

TABLE 5-2 Data for Account Managers

ID Name Employment Date Salary Commission Region

T500 Nick Taylor September 5, 2009 $42,000.00 $3,500.00 NE

L500 Mandy Lopez October 1, 2009 $47,000.00 $1,500.00

J500 Sammie Jones Today $39,500.00 $2,000.00 NW

Using the INSERT Command
An INSERT command is used to add new rows of data to a table. The syntax of this
command is shown in Figure 5-2.

FIGURE 5-2 Syntax of the INSERT command

Note the following syntax elements in Figure 5-2:

• The keywords INSERT INTO are followed by the name of the table into
which rows will be entered. The table name is followed by a list of the

143

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

columns containing the data. The square brackets surrounding this list
indicate that using a column list is optional.

• The VALUES clause identifies the data values to be inserted in the table. You
list the data values in parentheses after the VALUES keyword.

• If the data entered in the VALUES clause contains a value for every column
and is in the same order as columns in the table, column names can be
omitted in the INSERT INTO clause.

• If you enter data for only some columns, or if columns are listed in a
different order than they’re listed in the table, the column names must be
provided in the INSERT INTO clause in the same order as they’re given in
the VALUES clause. You must list the column names inside parentheses after
the table name in the INSERT INTO clause.

• If more than one column is listed, column names must be separated by
commas.

• If more than one data value is entered, the values must be separated by
commas.

• You must use single quotes to enclose nonnumeric data inserted in a column.
(That is, the column’s datatype is not NUMBER.)

T I P

You can review the order of columns in a table by using the DESCRIBE tablename command.

To insert the first account manager’s data (refer to Table 5-2) in the ACCTMANAGER
table, use the command shown in Figure 5-3.

FIGURE 5-3 The INSERT command for Nick Taylor

The INSERT INTO clause shown in Figure 5-3 doesn’t contain a list of column
names because the VALUES clause contains a valid entry for every column in the
ACCTMANAGER table, and the data is given in the same order as columns are listed in
the table.

144

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The character data in the VALUES clause is entered in all uppercase characters, as for
all tables in the JustLee Books database. When you enter character data, it retains the
case you use in the INSERT INTO command. For example, if an account manager’s name
is entered in mixed case (uppercase and lowercase letters), the table stores the name in
mixed case. Mixed case can make future record searches difficult if the data doesn’t follow
a consistent format or case because character data matching is case sensitive.

The date value uses the default date format for Oracle 12c: two-digit day, three-
character-month, and two-digit year, separated by hyphens. (You can also provide a four-
digit year value.) Notice that single quotes aren’t required for numeric values in the
INSERT INTO statement, such as the salary and commission values. Also, no formatting
characters, such as a comma or dollar sign, should be included in values because they
raise an error. A NUMBER column stores only digits. You add formatting characters when
querying numeric values in Chapter 10.

N O T E

Methods to contend with case sensitivity issues and different date formats are addressed in Chapter 10.

After you execute the INSERT INTO command, the message “1 rows inserted” is
displayed, indicating that data has been inserted in the table. To verify that the row was
added, you can use a SELECT statement to view the table’s contents. Figure 5-4 shows a
query to confirm that data for the first account manager, Nick Taylor, has been added to
the ACCTMANAGER table.

FIGURE 5-4 Verify that data was inserted

T I P

When inserting table data, the most common error is forgetting to enclose data for nonnumeric columns
in single quotes. When this occurs, Oracle 12c displays the message “ERROR:ORA-01756: quoted
string not properly terminated.” You can correct the problem by simply reissuing the command with the
required single quotes.

145

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The next record to enter in the ACCTMANAGER table contains data about Mandy
Lopez. However, as shown in Table 5-2, she hasn’t yet been assigned a marketing region,
so that column is left blank. You can take one of the following approaches to indicate that
the Region column contains a NULL value:

• List all columns except the Region column in the INSERT INTO clause, and
provide data for the listed columns in the VALUES clause.

• In the VALUES clause, substitute two single quotes in the position that
should contain the account manager’s assigned region. Oracle 12c interprets
the two single quotes to mean that a NULL value should be stored in the
column. Be sure you don’t add a blank space between these single quotes,
however. Doing so adds a blank space value rather than a NULL value.

• In the VALUES clause, include the keyword NULL in the position where the
region should be listed. As long as the keyword NULL isn’t enclosed in single
quotes, Oracle 12c leaves the column blank. However, if the keyword is
mistakenly entered as ‘NULL’, Oracle 12c tries to store the word “NULL” in
the column.

Figure 5-5 shows the INSERT INTO commands for entering NULL values with these
three methods.

FIGURE 5-5 Methods for entering NULL values

Execute the third method, and Oracle 12c adds Mandy Lopez to the ACCTMANAGER
table, as shown in Figure 5-6.

FIGURE 5-6 The INSERT INTO command for Mandy Lopez

146

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Many developers consider using a column list in an INSERT command a good practice. First, reading
statements that include a column list is easier because you don’t need to reference a column structure
listing to recall the columns in the table. Second, if columns are added to the table later, an INSERT
statement using the original column list still executes successfully.

Next, you need to enter the record for Sammie Jones in the ACCTMANAGER table.
Note that Sammie’s employment date should be set to the current date. You could include
the value SYSDATE in the VALUES clause to have Oracle 12c insert the current date in
the Amedate column, as shown in Figure 5-7.

FIGURE 5-7 Using SYSDATE as a data value

However, in this case, the Amedate column has a DEFAULT option set to SYSDATE.
To instruct Oracle 12c to use the DEFAULT option, you can use one of two methods:

• Include a column list in the INSERT INTO clause that omits the Amedate
column.

• Use the keyword DEFAULT for the column value in the VALUES clause.

Figure 5-8 shows the commands for both methods.

FIGURE 5-8 Methods for using a DEFAULT option

Use Figure 5-9 as a guide to execute the first method shown in Figure 5-8 for adding
the Sammie Jones record. The column list in the INSERT INTO clause lists all columns of
the ACCTMANAGER table except Amedate. Although the columns are listed in the same
sequence as in the actual table, this order isn’t a requirement. What is required is that the
data listed in the VALUES clause matches the exact order of the columns listed in the
INSERT INTO clause. The order of the list dictates which data value is assigned to which
column.

147

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-9 Use an INSERT statement that applies a DEFAULT column option

T I P

What if the employment date for Sammie Jones is supposed to be NULL? Because the column has a
DEFAULT option setting, using a column list and excluding the Amedate column activates the DEFAULT
option and enters the current date for the column. To prevent this result, you must supply a NULL value
in the INSERT command for the Amedate column.

As shown in Figure 5-10, a display of the ACCTMANAGER table’s current contents
confirms the addition of the three records. Because the current date was used for Sammie
Jones’s employment date, your results will vary from what’s shown in Figure 5-10. Note
that the name values for Sammie Jones are in mixed case, which illustrates that character
values are stored in the case that’s used when the data is inserted.

FIGURE 5-10 Contents of the ACCTMANAGER table

148

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

The order of rows shown in Figure 5-10 might also vary from yours because no sorting operation is used.

A DEFAULT column option setting will be overridden when an explicit NULL value is
inserted. However, Oracle 12c now provides an ON NULL clause that may be used with
the DEFAULT option. Figure 5-11 demonstrates how this works. First, the Amsal column is
modified to include a DEFAULT option using the ON NULL clause, which will set the
column value to zero. Notice that the INSERT statement provides an explicit NULL value
for both the Amedate and Amsal columns. The Amedate column value is NULL in the row
inserted as the DEFAULT option on this column does not include an ON NULL clause.
However, the Amsal column is set to a value of zero, the DEFAULT setting, since the ON
NULL clause was applied on this column.

FIGURE 5-11 Using the ON NULL clause with a column DEFAULT option

The data dictionary will assist in identifying information regarding DEFAULT value
settings. The query in Figure 5-12 displays the DEFAULT value setting (DATA_DEFAULT)
and if the ON NULL clause applies (DEFAULT_ON_NULL).

12c

149

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-12 View DEFAULT option information from the data dictionary

Handling Virtual Columns
In Chapter 3, you created an Amearn column for the ACCTMANAGER table. This column
is a virtual column, which is a column that generates values based on other column values.
In other words, the database system generates the value for the column automatically
based on the manipulation (in this case, a calculation) defined for the column.

What happens if a virtual column is included in an INSERT command? A virtual
column must be ignored in an INSERT command, or an error occurs. To add a virtual
column to the ACCTMANAGER table, execute the ALTER TABLE statement shown in
Figure 5-13.

FIGURE 5-13 Add a virtual column

150

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The new column, Amearn, contains the total earnings for an account manager, which
is the salary plus commission.

Next, perform the query shown in Figure 5-14 to view the data values generated by
the virtual column for existing rows. Keep in mind that the values for Amearn are
generated during the query, using the calculation defined for the column.

Virtual column
Amearn

FIGURE 5-14 View data generated by a virtual column

Figure 5-15 shows an INSERT attempt of a fourth account manager. This command
includes a value for the virtual column Amearn. Note that the error message clearly states
a value can’t be inserted in a virtual column.

Error indicating
that an INSERT
isn’t allowed on
a virtual column

FIGURE 5-15 Error caused by using a virtual column in an INSERT statement

To add this row, you must use an INSERT command with a column list excluding the
virtual column, as shown in Figure 5-16.

151

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-16 Successful INSERT on a table with a virtual column

N O T E

Any calculations involving a NULL value always result in a NULL value. Therefore, virtual columns that
reference NULL value columns for calculations generate a NULL value. You discover how to optionally
substitute values for a NULL value for calculations in Chapter 10.

Handling Single Quotes in an INSERT Value
Inserting values containing single quotes raises an error because they’re confused with the
single quotes used to enclose character or string values. For example, what if another account
manager named Peg O’hara needs to be added to the ACCTMANAGER table? Figure 5-17
shows the INSERT statement, including the single quote in the account manager’s last name.

FIGURE 5-17 Error with a single quote in the value

152

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The error states that the issue is a missing comma. The single quote in the last name
value is treated as the closing quote for the string value ‘O’ for the last name. When the
INSERT command attempts to read values following this value, an error is raised.

To instruct Oracle 12c to treat a single quote as part of a string value, enter two single
quotes together in the value. Don’t use the double quote (”) because the command actually
inserts this character in the string value, and the result would be 0”hara. Figure 5-18
shows the successful INSERT command for account manager Peg O’hara. The command in
Figure 5-19 displays the data in the ACCTMANAGER table to confirm that a single quote
is inserted in the last name value O’hara.

FIGURE 5-18 Use two single quotes in the INSERT value

Single quote in value
inserted successfully

FIGURE 5-19 Query to confirm that a single quote was inserted successfully

Results might vary, depending on your computer’s system date, because SYSDATE
was used for employment dates for three account managers.

153

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

The INSERT commands covered so far add one row per statement. Oracle 12c also includes an
INSERT ALL command, which enables you to add multiple rows with a single statement.

Inserting Data from an Existing Table
In Chapter 3, you learned how to use the CREATE TABLE command with a subquery to
create and populate a new table based on an existing table’s structure and content.
However, what if a table already exists, and you need to add copies of records stored in
another table? In this case, you can’t use the CREATE TABLE command. Because
the table already exists, you need to use the INSERT INTO command with a subquery.
Figure 5-20 shows the syntax for combining an INSERT INTO command with a subquery.

FIGURE 5-20 Syntax of the INSERT INTO command with a subquery

Note the following elements in Figure 5-20:

• The main difference between using the INSERT INTO command with data
values and with a subquery is that the VALUES clause isn’t included with a
subquery. The keyword VALUES indicates that the clause contains data
values that must be inserted in the indicated table. However, the user isn’t
entering data values; the data is derived from the subquery’s results.

• Also, unlike the CREATE TABLE command, the INSERT INTO command
doesn’t require enclosing the subquery in parentheses, although including
parentheses doesn’t generate an error message.

The management of JustLee Books is exploring a new bonus policy for account
managers. A new table called ACCTBONUS has been created to test the new bonus
calculations, and this table should contain the ID, salary, and region for all account
managers. The ACCTMANAGER table currently contains all account manager data, and
the requested account manager data must be copied to the existing ACCTBONUS table.
Use a DESCRIBE statement and SELECT * query to view the structure and data in the
ACCTBONUS table. Note that the table is currently empty.

After the requested data has been copied to the ACCTBONUS table, SQL statements
from the Budget Department’s program that calculates commissions can be tested. Moving
this data to a separate table gives the Information Technology Department the flexibility of
making changes to the original ACCTMANAGER table without interfering with the Budget
Department’s program testing. Figure 5-21 shows the command to copy rows from the
ACCTMANAGER table to the ACCTBONUS table.

154

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-21 INSERT INTO command with a subquery

Note the following elements in Figure 5-21:

• The SELECT clause of the subquery lists the columns to be copied from the
ACCTMANAGER table, which is identified in the FROM clause.

• Even though a column list is used, the INSERT INTO clause isn’t required to
contain one because in this example, the columns the subquery returns are
in the same order as columns in the ACCTBONUS table.

After the command has been executed, query the ACCTBONUS table to confirm that
all account managers now exist in the ACCTBONUS table. As shown in the results in
Figure 5-22, five account manager rows now exist in the ACCTBONUS table.

FIGURE 5-22 ACCTBONUS data rows

N O T E

In later chapters, you learn many more options to use in the SELECT statement, such as restricting the
rows that are included and performing aggregate calculations to summarize data. All these options can
be used in a subquery.

155

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Oracle 12c has several utilities for importing and exporting data to and from external files, such as
SQL*Loader and Data Pump. This topic is beyond the scope of this textbook, so it isn’t addressed in this
chapter. Appendix D offers an introduction to SQL*Loader to give you an overview of a bulk import operation.

M O D I F Y I N G E X I S T I N G R O W S

Often you need to change column data values. For example, when customers move, their
mailing addresses need to be updated; when the wholesale costs of books change, retail
prices need to be changed. Because the INSERT INTO command can be used only to add
new rows to a table, you can’t use it to modify existing data. To alter existing table data,
you use the UPDATE command. In this section, you learn how to perform updates and
create interactive update scripts by using substitution variables.

Using the UPDATE Command
You change the contents of existing rows with the UPDATE command. The syntax of this
command is shown in Figure 5-23.

FIGURE 5-23 Syntax of the UPDATE command

Note the following elements in Figure 5-23:

• The UPDATE clause identifies the table containing the records to be changed.
• The SET clause identifies the columns to be changed and the new values to

be assigned to these columns.
• The optional WHERE clause identifies the exact records to be changed by

the UPDATE command. If the WHERE clause is omitted, the column
specified in the SET clause is updated for all records in the table.

Next, you use this command to make several changes that have been requested for
data in the ACCTMANAGER table. First, the employment date for Sammie Jones is
incorrect and needs to be changed to August 1, 2009. The command shown in Figure 5-24
can be issued to correct the employment date. Notice the SET clause, which indicates only
the new value to be entered in the Amedate column. The original value is simply
overwritten, so including it isn’t necessary.

The WHERE clause identifies exactly which record should be altered. In this case, the
easiest way to specify that only Sammie Jones’s employment date should be changed is to
include the condition that the Amid column must be equal to J500. Because the Amid
column is the primary key for the ACCTMANAGER table, no two records can have the
same Amid; therefore, only the record for Sammie Jones is affected by the update.

156

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-24 Command to correct the Amedate column value

Next, the northern regions are being closed, and the account managers assigned to
these regions need to be reassigned to the western region. You can make this change by
using the command shown in Figure 5-25.

FIGURE 5-25 UPDATE command to reassign regions

Query the table to verify the data changes. Notice that in this case, two of the existing
rows in the table were modified.

What if you need to modify more than one column of a row? You can do this by
adding multiple columns in the SET clause of the UPDATE command. For example, the
employment date for Mandy Lopez needs to be changed to be October 10, 2009, and she
needs to be assigned to the southern region. Execute the statement in Figure 5-26.

157

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-26 Updating multiple columns

C A U T I O N

In Chapter 4, you executed INSERT statements that raised constraint violations. Keep in mind that all
data manipulations must meet constraint requirements to complete successfully. Otherwise, the DML
action is stopped, and a constraint violation error message is displayed.

N O T E

A MERGE statement is also available in Oracle 12c to perform DML operations. This command,
covered in Chapter 12, allows a sequence of conditional INSERT and UPDATE commands in a single
statement.

Using Substitution Variables
Sometimes just adding a record to a table seems like a lot of effort, and modifying an
existing record seems to take even more effort, especially if you need to add or modify
10 or 20 records. For example, say the Region column has just been added to the
CUSTOMERS table with the ALTER TABLE command. Every customer’s record needs to
be updated with the value for this new column. Depending on the strategy you use, the
UPDATE command must be reissued several times—at least once for every identified
region. Instead of typing the same command again and again for the few values that differ,
using a substitution variable is much simpler.

N O T E

Keep in mind that SQL commands can be embedded in applications to perform database interaction
activities. If so, values from user input in screen elements, such as text boxes, are passed to the SQL
statement via variables. The use of SQL*Plus substitution variables is similar to this process.

158

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A substitution variable in an SQL command instructs Oracle 12c to substitute a
value in place of the variable at the time the command is actually executed. To include a
substitution variable in an SQL command, simply enter an ampersand (&) followed by the
name used for the variable.

First, clear all current values stored in the Region column of the CUSTOMERS table
with the UPDATE statement shown in Figure 5-27. Be sure the single quotes for the SET
clause value don’t contain a blank space because that sets the column to a NULL value.
A WHERE clause isn’t included in this UPDATE statement, so all rows are modified. Next,
perform a query to view all rows in the CUSTOMERS table to confirm that the Region
value is NULL for all rows.

FIGURE 5-27 Clear the Region column

Now take a look at modifying the Region column for customers in a specific state. For
example, you want to modify the records of all customers residing in California so that the
Region column contains the value W, representing the western region. The command is
shown in Figure 5-28.

FIGURE 5-28 Command to set the Region value for California customers

To alter the command shown in Figure 5-28 so that you can reuse it for each state in
which JustLee Books has customers, you need to enter a substitution variable in place of
the value for the State column. Furthermore, the SET clause can contain a substitution
variable, so the same command could be used for every region to be updated. Figure 5-29
shows the new command containing substitution variables.

159

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When Oracle 12c executes the command shown in Figure 5-29, the user is first
prompted to enter a value for the substitution variable named Region. The name of a
substitution variable doesn’t need to be the same as an existing column name; however, it
should clearly indicate the data being requested from the user. Because the SET clause
needs the user to enter a value for the region, the variable is named Region.

FIGURE 5-29 Prompt for substitution variable input

Enter the value W at the Region variable prompt. After entering a value for the Region
column, you’re asked for the value of the second substitution variable in the WHERE
clause. This substitution variable, named State, is used to define exactly which rows to
update. Enter the value CA at the State variable prompt. Then execute the query shown
in Figure 5-30 to verify that customer rows with a State value of CA now have a Region
value of W.

160

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-30 Verify UPDATE results

The statement can now be reexecuted easily. By using substitution variables, the
statement becomes interactive, and the user can continue to update the Region column
for as many states as necessary.

If a user can’t complete all the customer record updates during one session, the
command can be stored permanently in a script to be executed later. A script is a text file
containing one or more SQL statements. You can create a script containing the UPDATE
statement with substitution variables by selecting File, Save from the main menu in SQL
Developer. This menu command saves the statements currently in the SQL statement
pane. By default, files are saved with a .sql extension to associate the file with SQL tools.
To use the saved script, click File, Open from the menu and select the file.

T I P

If you’re using the SQL*Plus client tool, research the SAVE and SPOOL commands to store an SQL
statement in a script and the @ and START commands to execute a script.

161

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

D E L E T I N G R O W S

When you need to remove rows from database tables, use the DELETE command.
Compared to other commands covered in this chapter, the DELETE command is
incredibly simple—perhaps even too simple! Figure 5-31 shows the syntax of this
command.

FIGURE 5-31 Syntax of the DELETE command

The syntax of the DELETE command doesn’t allow specifying any column names
because DELETE applies to an entire row and can’t be applied to specific columns in a
row. The WHERE clause, which is optional, identifies the rows to be deleted from the
specified table.

C A U T I O N

If you omit the WHERE clause, all rows are deleted from the specified table.

Suppose you’re notified that Sammie Jones moved to the Customer Service
Department and should no longer be listed in the ACCTMANAGER table. Because her
information has already been inserted, you must use the DELETE command to remove
her row from the ACCTMANAGER table, as shown in Figure 5-32.

FIGURE 5-32 DELETE command to remove a row from the ACCTMANAGER table

The WHERE clause identifies the exact record—where Amid is equal to J500—to be
removed from the ACCTMANAGER table. After the record is deleted, the row for Sammie
Jones no longer exists in the table, as shown in Figure 5-33.

162

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-33 The row for Sammie Jones has been removed

The WHERE clause in this DELETE statement causes only a single row to be deleted.
As with an UPDATE statement, however, a group of rows could be deleted as well. Be
aware that a DELETE command without a WHERE clause, as shown in Figure 5-34,
deletes all rows in the table because no specific record is identified for deletion.

FIGURE 5-34 DELETE command without the WHERE clause

U S I N G T R A N S A C T I O N C O N T R O L
S T A T E M E N T S

Changes to data made by DML commands aren’t saved permanently to the table when you
execute the SQL statement. Therefore, you have the flexibility of issuing transaction
control statements to save the modified data or undo the changes if they were made in
error. Until the data has been saved permanently to the table, no other users can view any
changes you have made. All DML commands you execute remain in a transaction queue
until you save the actions permanently or undo the actions.

A transaction is a term used to describe DML statements representing data actions
that should logically be performed together. A common example is a bank transaction. For
example, you withdraw $500 from a savings account and want to put half this amount in
your checking account and the other half in a mutual fund account. If the system crashes
after the withdrawal is carried out but before the deposits to the other two accounts are
accomplished, would you lose $500? Not if transaction control is in effect. Transaction
control statements determine at which points DML activity is saved permanently. In the
bank transaction example, the save doesn’t occur until all three actions are committed.

163

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

COMMIT and ROLLBACK Commands
A COMMIT command issued implicitly or explicitly permanently saves the DML
statements issued previously. An explicit COMMIT occurs when you enter a COMMIT
statement. By default, an implicit COMMIT occurs when you exit client tools, such as SQL
Developer. It also occurs if a DDL command, such as CREATE or ALTER TABLE, is
issued. In other words, if a user adds several records to a table and then creates a new
table, the records added before the DDL command is issued are committed automatically
(implicitly).

In Oracle 12c, a transaction consists of a series of statements that have been issued
and not committed. A transaction could consist of one SQL statement or 2000 SQL
statements issued over an extended period. The duration of a transaction is defined by
when a commit occurs implicitly or explicitly.

A program can manage the statements that should be grouped together in a
transaction by determining when to issue a commit based on an event. For example, if a
purchase order has been entered containing the purchase of several items, this transaction
involves an insert into the ORDERS table and multiple inserts into the ORDERITEMS
table. A commit covering all these inserts might not be issued until the user clicks a
Finalize Order button and the credit card approval code is returned. At this point, the
commit saves all the inserts permanently as a group.

N O T E

You can verify that data hasn’t been saved permanently by issuing an UPDATE statement in one
session and then logging in to a second session to view the table and see that the changes aren’t
visible. Then try it again, but in the first session, issue a COMMIT statement. Now check the data in the
second session to see the changes.

Unless a DML operation is committed, it can be undone by issuing the ROLLBACK
command. For example, if you haven’t exited Oracle 12c since beginning to work through
the examples in this chapter, executing a ROLLBACK statement reverses all the rows you
entered or altered during your work in this chapter. Similarly, in the purchase order
described previously, a Cancel button, for example, allows the data entry user to undo all
inserts issued during the order entry. Therefore, the ROLLBACK command reverses all
DML operations performed since the last commit was issued.

By contrast, commands such as CREATE TABLE, TRUNCATE TABLE, and ALTER
TABLE can’t be rolled back because they are DDL commands, and a commit occurs
automatically when they’re executed. Note, however, that if the system crashes, a rollback
occurs automatically after Oracle 12c restarts, and any operations not committed
previously are undone.

To ensure that all operations performed so far in this chapter are safe from being
reversed accidentally, issue the command shown in Figure 5-35 before continuing with the
remaining examples in this chapter. Next, query the ACCTMANAGER table and verify that
the data matches the listing shown earlier in Figure 5-33.

164

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-35 Command to save data changes permanently

N O T E

Be sure to issue the COMMIT statement in Figure 5-33 before completing the exercises in this section. If
your data doesn’t match the listing in Figure 5-31, modify it as needed, and then issue a COMMIT
statement again.

T I P

If you’re using the SQL Developer tool, verify that the Autocommit option isn’t on. This option is located
in the preference settings. On the menu, select Tools, Preferences, Database and Worksheet
Parameters.

SAVEPOINT Command
Along with COMMIT commands, developers sometimes use the SAVEPOINT command to
create a type of bookmark in a transaction. This command is commonly used in the banking
industry. For example, a customer is making both a deposit and a withdrawal through an
ATM. If the customer first makes a deposit and then requests a withdrawal, but cancels the
withdrawal before the money is dispensed, is the entire customer transaction canceled?

To address this issue, a program can be designed to commit the deposit as one
transaction and then begin the withdrawal as a separate transaction. However, some
designers have the program issue a command with the syntax SAVEPOINT name; after the
deposit is completed to identify a particular “point” in a transaction—a potential
ROLLBACK point. If a subsequent portion of the transaction is canceled, the program
simply issues a command with the syntax ROLLBACK TO SAVEPOINT name;—and any
SQL statements issued after the SAVEPOINT command aren’t permanently updated to the
database. A COMMIT command still needs to be executed to update the database with any
data added or changed by the first part of the transaction.

To see how this command works, make several changes to the ACCTMANAGER table
by using transaction control statements. First, execute the series of UPDATE statements

165

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

shown in Figure 5-36. This series include a COMMIT following the first UPDATE and a
SAVEPOINT before the last UPDATE.

Permanent save with COMMIT

Create a SAVEPOINT

FIGURE 5-36 Establishing a SAVEPOINT

Second, query the data as shown in Figure 5-37. The query verifies that the region has
been changed for three account manager records, and the commission value has been
changed for one account manager record.

One row
has commission

set to 6600

Three rows
have region
set to E

FIGURE 5-37 Verify that modifications were made

166

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

What would happen if you issued a ROLLBACK command at this point? All UPDATES
except the first one in the series are undone, and the associated region and commission
values return to their original values before the UPDATE statements. The region change in
the first UPDATE (for Amid M500), however, doesn’t revert because a COMMIT was issued
following this UPDATE.

What if you want to undo only the last UPDATE? Issue a ROLLBACK TO SAVEPOINT
statement, as shown in Figure 5-38. Then query the data as shown in Figure 5-39 to
confirm the result.

FIGURE 5-38 Undo changes to the SAVEPOINT

Figure 5-39 shows that the last UPDATE was undone; however, the three previous
UPDATE statements (before the SAVEPOINT) are intact. If you now want to permanently
save the two UPDATE statements before the SAVEPOINT, you could issue a COMMIT
statement. However, what if you need to undo these modifications as well? Issue a
ROLLBACK command to undo the two UPDATE statements, as shown in Figure 5-40.
Verify the results by querying the table again, and compare your results to Figure 5-41.

Commission reset to
original value of 3500

FIGURE 5-39 Verify the results of ROLLBACK TO SAVEPOINT

167

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-40 Undo all pending changes

Two rows
have Region
reset to the
original value

FIGURE 5-41 Verify the ROLLBACK results

U S I N G T A B L E L O C K S

The discussion of DML and transaction control statements needs to address the fact that
most database systems have numerous concurrent users. What happens if two users try to
change the same record at the same time? Which change is saved to the table? When DML
commands are issued, Oracle 12c, by default, performs a row-level lock, which implicitly
“locks” the rows being affected so that no other user can change these rows. In addition, a
lock is placed on the table so that other users can’t attempt to lock the whole table while
the row lock is active. The lock is a shared lock, meaning other users can view data stored
in the table, but they can’t alter the table structure or perform other types of DDL
operations, in addition to not being able to change the specific rows that are locked.

LOCK TABLE Command
Although rarely used outside a program, a user can explicitly lock a table in SHARE mode
by issuing the LOCK TABLE command. Figure 5-42 shows the syntax of this command.

168

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 5-42 Syntax of LOCK TABLE in SHARE mode

When DDL operations are performed, Oracle 12c places an exclusive lock on the
table so that no other user can alter the table or attempt adding to or updating the table’s
contents. If an exclusive lock exists on a table, no other user can place an exclusive lock
or a shared lock on the same table. In addition, if a user has a shared lock on a table, no
other user can place an exclusive lock on the same table. If necessary, the user can
instruct Oracle 12c to lock a table in EXCLUSIVE mode, using the command syntax
shown in Figure 5-43.

FIGURE 5-43 Syntax of LOCK TABLE in EXCLUSIVE mode

C A U T I O N

Always be careful when explicitly locking a table. If one user locks a portion of a table in SHARE mode,
and another user locks a different portion of a table, and the completion of one user’s command
depends on the portion of a table locked by the other user, a deadlock occurs. Usually, Oracle 12c
detects deadlocks automatically and returns an error message to one of the users. When an error
message is returned, the lock is also released, so the command issued by the other user is completed.
Locks (including exclusive locks) are released automatically if the user issues a transaction control
statement, such as ROLLBACK or COMMIT, or exits the system.

SELECT … FOR UPDATE Command
A data consistency issue can occur when a user looks at the contents of a record, makes a
decision based on those contents, and then updates the record—only to find out that
between the SELECT command and the UPDATE command, the record’s contents have
changed. For example, you’re assigned the task of increasing the retail price of certain
books, and you’re told to base the new retail price on a percentage of the book’s cost. As
you begin to update retail prices, you realize someone has updated the cost of the books.
Ugh! Now what should you do?

As mentioned, DML operations aren’t stored permanently in a table until a COMMIT
command is issued. To provide a consistent view for all users accessing the table in a
multiuser environment, no changes can be seen by other users until the changes have
been committed. This can create major headaches, however, when working with
transaction-type tables that are constantly being changed to reflect new orders, account
balances, and so on.

169

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To avoid this problem, you can use the SELECT … FOR UPDATE command to view
a record’s contents when you anticipate that the record will need to be modified. The
SELECT … FOR UPDATE command places a shared lock on the records to be changed
and prevents any other user from acquiring a lock on the same records. The syntax is the
same as a regular SELECT statement, except the FOR UPDATE clause is added at the end,
as shown in Figure 5-44.

FIGURE 5-44 Syntax of the SELECT … FOR UPDATE command

If a user decides to update a record, a regular UPDATE command is used to
perform the change. However, if the user doesn’t change any of the data included in the
SELECT … FOR UPDATE command, a COMMIT or ROLLBACK command must
still be issued, or the selected rows remain locked, and no other users can make
changes to those rows.

170

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• Data manipulation language (DML) includes the INSERT, UPDATE, DELETE,
COMMIT, and ROLLBACK commands.

• The INSERT INTO command is used to add new rows to an existing table.
• The column list specified in the INSERT INTO clause must match the order of

data entered in the VALUES clause.
• A virtual column must be ignored in all DML actions because the database system

generates this column value automatically.
• You can use a NULL value in an INSERT INTO command by including the keyword

NULL, omitting the column from the column list of the INSERT INTO clause, or
entering two single quotes (without a space) in the position of the NULL value.

• To assign a DEFAULT option value, a column must be excluded from the column
list in an INSERT statement, or the keyword DEFAULT must be included as the
value for the column.

• A DEFAULT option using the ON NULL clause will set a value for the column if a
NULL value is provided.

• In a DML statement, two single quotes together must be used to represent a
single quote in a value.

• If rows are copied from a table and entered in an existing table by using a
subquery in the INSERT INTO command, the VALUES clause must be omitted
because it’s irrelevant.

• You can change the contents of a row or group of rows with the UPDATE command.
• You can use substitution variables to allow you to execute the same command

several times with different data values.
• DML operations aren’t stored permanently in a table until a COMMIT command is

issued implicitly or explicitly.
• A transaction consists of a set of DML operations committed as a block.
• Uncommitted DML operations can be undone by issuing the ROLLBACK command.
• A SAVEPOINT serves as a marker for a point in a transaction and allows rolling

back only a portion of the transaction.
• Use the DELETE command to remove records from a table. If the WHERE clause

is omitted, all rows in the table are deleted.
• Table locks can be used to prevent users from mistakenly overwriting changes

made by other users.
• Table locks can be in SHARE mode or EXCLUSIVE mode.
• EXCLUSIVE mode is the most restrictive table lock and prevents any other user

from placing any locks on the same table.
• A lock is released when a transaction control statement is issued, a DDL

statement is executed, or the user exits the system by using the EXIT command.
• SHARE mode allows other users to place shared locks on other portions of the

table, but it prevents users from placing an exclusive lock on the table.
• The SELECT … FOR UPDATE command can be used to place a shared lock for

a specific row or rows. The lock isn’t released unless a DDL command is issued or
the user exits the system.

171

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Command Description Example

Optional SELECT Clauses

INSERT Adds new rows to a
table; a subquery can
be included to copy
rows from an existing
table

INSERT INTO acctmanager
VALUES ('T500', 'NICK TAYLOR',

'05-SEP-09', 'NE');
or

INSERT INTO acctmanager
SELECT amid, amname, amedate, region
FROM acctmanager
WHERE amedate <= '01-OCT-09';

UPDATE Adds data to, or
modifies data in, an
existing row

UPDATE acctmanager
SET amedate = '05-SEP-09'
WHERE amid = ' J500';

COMMIT Saves changed data in
a table permanently

COMMIT;

ROLLBACK Allows the user to
“undo” uncommitted
changes to data

ROLLBACK;

DELETE Removes rows from
a table

DELETE FROM acctmanager
WHERE amid = 'D500';

LOCK TABLE Prevents other users
from making changes
to a table

LOCK TABLE customers IN SHARE MODE;

or
LOCK TABLE customers IN EXCLUSIVE MODE;

SELECT ...
FOR UPDATE

Creates a shared lock
on a table to prevent
another user from
making changes to data
in specified columns

SELECT cost
FROM books
WHERE category = 'COMPUTER'
FOR UPDATE;

Interactive Operator

& Identifies a substitution
variable; allows prompting
the user to enter a
specific value for the
substitution variable

UPDATE customers
SET region = '&Region'
WHERE state = '&State';

172

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. Which command should you use to copy data from one table and have it added to an
existing table?

2. Which command can you use to change the existing data in a table?

3. When do changes generated by DML operations become stored in database tables
permanently?

4. Explain the difference between explicit and implicit locks.

5. If you add a record to the wrong table, what’s the simplest way to remove the record from
the table?

6. How does Oracle 12c identify a substitution variable in an SQL command?

7. How are NULL values included in a new record being added to a table?

8. When should the VALUES clause be omitted from the INSERT INTO command?

9. What happens if a user attempts to add data to a table, and the addition would cause the
record to violate an enabled constraint?

10. What two methods can be used to activate a column’s DEFAULT option in an INSERT
command?

Multiple Choice

1. Which of the following is a correct statement?

a. A commit is issued implicitly when a user exits SQL Developer or SQL*Plus.

b. A commit is issued implicitly when a DDL command is executed.

c. A commit is issued automatically when a DML command is executed.

d. All of the above are correct.

e. Both a and b are correct.

f. Both a and c are correct.

2. Which of the following is a valid SQL statement?

a. SELECT * WHERE amid = ‘J100’ FOR UPDATE;

b. INSERT INTO homeworkl0 VALUES (SELECT * FROM acctmanager);

c. DELETE amid FROM acctmanager;

d. rollback;

e. all of the above

3. Which of the following commands can be used to add rows to a table?

a. INSERT INTO

b. ALTER TABLE … ADD

c. UPDATE

d. SELECT … FOR UPDATE

173

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Which of the following statements deletes all rows in the HOMEWORK10 table?

a. DELETE * FROM homework10;

b. DELETE *.* FROM homework10;

c. DELETE FROM homework10;

d. DELETE FROM homework10 WHERE amid = ‘*’;

e. Both c and d delete all rows in the HOMEWORK10 table.

5. Which of the following statements places a shared lock on at least a portion of a table
named HOMEWORK10?

a. SELECT * FROM homework10 WHERE col2 IS NULL FOR UPDATE;

b. INSERT INTO homework10 (col1, col2, col3) VALUES (‘A’, ‘B’, ‘C’);

c. UPDATE homework10 SET col3 = NULL WHERE col1 = ‘A’;

d. UPDATE homework10 SET col3 = LOWER (col3) WHERE col1 = ‘A’;

e. all of the above

6. Assuming the HOMEWORK10 table has three columns (Col1, Col2, and Col3, in this
order), which of the following commands stores a NULL value in Col3 of the
HOMEWORK10 table?

a. INSERT INTO homework10 VALUES (‘A’, ‘B’, ‘C’);

b. INSERT INTO homework10 (col3, col1, col2) VALUES (NULL, ‘A’, ‘B’);

c. INSERT INTO homework10 VALUES (NULL, ‘A’, ‘B’);

d. UPDATE homework10 SET col1 = col3;

7. Which of the following symbols designates a substitution variable?

a. &

b. $

c. #

d. –

8. Which of the following input values results in a successful INSERT of O’hara?

a. ‘O^hara’

b. ‘O’ ’hara’ (two single quotes following the O)

c. ‘O”hara’ (a double quote following the O)

d. Data values can’t contain quotes.

9. Which of the following commands locks the HOMEWORK10 table in EXCLUSIVE mode?

a. LOCK TABLE homework10 EXCLUSIVELY;

b. LOCK TABLE homework10 IN EXCLUSIVE MODE;

c. LOCK TABLE homework10 TO OTHER USERS;

d. LOCK homework10 IN EXCLUSIVE MODE;

e. Both b and d lock the table in EXCLUSIVE mode.

174

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. You issue the following command: INSERT INTO homework10 (col1, col2, col3) VALUES
(‘A’, NULL, ‘C’). The command will fail if which of the following statements is true?

a. Col1 has a PRIMARY KEY constraint enabled.

b. Col2 has a UNIQUE constraint enabled.

c. Col3 is defined as a DATE column.

d. None of the above would cause the command to fail.

11. Which of the following releases a lock currently held by a user on the HOMEWORK10 table?

a. A COMMIT command is issued.

b. A DDL command is issued to end a transaction.

c. The user exits the system.

d. A ROLLBACK command is issued.

e. all of the above

f. none of the above

12. Assume you have added eight new orders to the ORDERS table. Which of the following
is true?

a. Other users can view the new orders as soon as you execute the INSERT INTO
command.

b. Other users can view the new orders as soon as you issue a ROLLBACK command.

c. Other users can view the new orders as soon as you exit the system or execute a
COMMIT command.

d. Other users can view the new orders only if they place an exclusive lock on the table.

13. Which of the following commands removes all orders placed before April 1, 2009?

a. DELETE FROM orders WHERE orderdate < ‘01-APR-09’;

b. DROP FROM orders WHERE orderdate < ‘01-APR-09’;

c. REMOVE FROM orders WHERE orderdate < ‘01-APR-09’;

d. DELETE FROM orders WHERE orderdate > ‘01-APR-09’;

14. How many rows can be added to a table by executing the INSERT INTO … VALUES
command?

a. 1

b. 2

c. 3

d. unlimited

15. You accidentally deleted all the orders in the ORDERS table. How can the error be
corrected after a COMMIT command has been issued?

a. ROLLBACK;

b. ROLLBACK COMMIT;

c. REGENERATE RECORDS orders;

d. None of the above restores the deleted orders.

175

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. Which of the following is the standard extension used for a script file?

a. .spt

b. .srt

c. .script

d. .sql

17. A rollback occurs automatically when:

a. A DDL command is executed.

b. A DML command is executed.

c. The user exits the system.

d. none of the above

18. What is the maximum number of rows that can be deleted from a table at one time?

a. 1

b. 2

c. 3

d. unlimited

19. Which of the following is a correct statement?

a. If you attempt to add a record that violates a constraint for one of the table’s columns,
only the valid columns for the row are added.

b. A subquery nested in the VALUES clause of an INSERT INTO command can return
only one value without generating an Oracle 12c error message.

c. If you attempt to add a record that violates a NOT NULL constraint, a blank space is
inserted automatically in the appropriate column so that Oracle 12c can complete the
DML operation.

d. None of the above statements is correct.

20. What is the maximum number of records that can be modified with a single UPDATE
command?

a. 1

b. 2

c. 3

d. unlimited

Hands-On Assignments

To perform the following assignments, refer to the tables created in the JLDB_Build_5.sql script
at the beginning of the chapter.

1. Add a new row in the ORDERS table with the following data: Order# = 1021, Customer# =
1009, and Order date = July 20, 2009.

2. Modify the zip code on order 1017 to 33222.

3. Save the changes permanently to the database.

176

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Add a new row in the ORDERS table with the following data: Order# = 1022, Customer# =
2000, and Order date = August 6, 2009. Describe the error raised and what caused the error.

5. Add a new row in the ORDERS table with the following data: Order# = 1023 and
Customer# = 1009. Describe the error raised and what caused the error.

6. Create a script using substitution variables that allows a user to set a new cost amount for
a book based on the ISBN.

7. Execute the script and set the following values: isbn = 1059831198 and cost = $20.00.

8. Execute a command that undoes the change in Step 7.

9. Delete Order# 1005. You need to address both the master order record and the related
detail records.

10. Execute a command that undoes the previous deletion.

Advanced Challenge

Currently, the contents of the Category column in the BOOKS table are the actual name for each
category. This structure presents a problem if one user enters COMPUTER for the Computer
category and another user enters COMPUTERS. To avoid this and other problems that might
occur, the database designers have decided to create a CATEGORY table containing a code and
description for each category. The structure for the CATEGORY table should be as follows:

Column Name Datatype Width Constraints

CATCODE VARCHAR2 3 PRIMARY KEY

CATDESC VARCHAR2 11 NOT NULL

The data for the CATEGORY table is as follows:

CATCODE CATDESC

BUS BUSINESS

CHN CHILDREN

COK COOKING

COM COMPUTER

FAL FAMILY LIFE

FIT FITNESS

SEH SELF HELP

LIT LITERATURE

177

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Required:

• Create the CATEGORY table and populate it with the given data. Save the
changes permanently.

• Add a column to the BOOKS table called Catcode.
• Add a FOREIGN KEY constraint that requires all category codes entered in the

BOOKS table to already exist in the CATEGORY table. Set the Catcode values for
the existing rows in the BOOKS table, based on each book’s current Category
value.

• Verify that the correct categories have been assigned in the BOOKS table, and
save the changes permanently.

• Delete the Category column from the BOOKS table.

Case Study: City Jail

Execute the CityJail_5.sql script to rebuild the CRIMINALS and CRIMES tables of the City Jail
database. The statements at the beginning of this script drop existing tables in your schema
with the same table names.

N O T E

The CityJail_5.sql script is not included in the data files; it’s included with the solution files,
so it will be provided by your instructor.

Review the script so that you’re familiar with the table structure and constraints, and then
do the following:

1. Create and execute statements to perform the following DML activities. Save the changes
permanently to the database.
a. Create a script to allow a user to add new criminals (providing prompts to the user) to

the CRIMINALS table.

b. Add the following criminals, using the script created in the previous step. No value
needs to be entered at the prompt if it should be set to the DEFAULT column value.
Query the CRIMINALS table to confirm that new rows have been added.

Criminal_ID Last First Street City State Zip Phone V_status P_status

1015 Fenter Jim Chesapeake VA 23320 N N

1016 Saunder Bill 11 Apple
Rd

Virginia
Beach

VA 23455 7678217443 N N

1017 Painter Troy 77 Ship
Lane

Norfolk VA 22093 7677655454 N N

178

Chapter 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. Add a column named Mail_flag to the CRIMINALS table. The column should be
assigned a datatype of CHAR(1).

d. Set the Mail_flag column to a value of ‘Y’ for all criminals.

e. Set the Mail_flag column to ‘N’ for all criminals who don’t have a street address
recorded in the database.

f. Change the phone number for criminal 1016 to 7225659032.

g. Remove criminal 1017 from the database.

2. Execute a DML statement to accomplish each of the following actions. Each statement
produces a constraint error. Document the error number and message, and briefly explain
the cause of the error. If your DML statement generates a syntax error rather than a
constraint violation error, revise your statement to correct any syntax errors. You can review
the CityJail_5.sql file to identify table constraints.
a. Add a crime record using the following data: Crime_ID = 100, Criminal_ID = 1010,

Classification = M, Date_charged = July 15, 2009, Status = PD.

b. Add a crime record using the following data: Crime_ID = 130, Criminal_ID = 1016,
Classification = M, Date_charged = July 15, 2009, Status = PD.

c. Add a crime record using the following data: Crime_ID = 130, Criminal_ID = 1016,
Classification = P, Date_charged = July 15, 2009, Status = CL.

179

Data Manipulation and Transaction Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R6
ADDITIONAL DATABASE
OBJECTS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Define the purpose of a sequence and explain how it can be used in a
database

• Use the CREATE SEQUENCE command to create a sequence

• Explain why gaps might appear in integers generated by a sequence

• Call and use sequence values

• Identify which options can’t be changed by the ALTER SEQUENCE
command

• Delete a sequence

• Create indexes with the CREATE INDEX command

• Explain the main index structures: B-tree and bitmap

• Verify index use with the explain plan

• Describe variations on conventional indexes, including a function-based
index and an index organized table

• Verify index existence via the data dictionary

• Rename an index with the ALTER INDEX command

• Remove an index with the DELETE INDEX command

• Create and remove a public synonym

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

The tables and constraints you created in previous chapters are considered database
objects. A database object is anything with a name and a defined structure. Three other
database objects commonly used in Oracle 12c are sequences, indexes, and synonyms,
which you examine in this chapter. The following list identifies the role of each object:

• A sequence generates sequential integers that organizations can use to assist
with internal controls or simply to serve as primary keys for tables.

• A database index serves the same basic purpose as an index in a book,
allowing users to locate specific records quickly.

• A synonym is a simpler name, like a nickname, given to an object with a
complex name or to provide an alternative name for identifying database
objects. Synonyms can simplify referencing objects with complex names and
objects that are moved to different schemas.

This chapter explains how to create, maintain, and delete sequences and how to create
and delete indexes and synonyms. Table 6-1 is an overview of this chapter’s contents.

TABLE 6-1 Overview of Chapter Contents

Description Command Syntax

Create a sequence to generate a series
of integers

CREATE SEQUENCE sequencename

[INCREMENT BY value]
[START WITH value]
[{MAXVALUE value | NOMAXVALUE}]
[{MINVALUE value | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{ORDER | NOORDER}]
[{CACHE value | NOCACHE}];

Alter a sequence ALTER SEQUENCE sequencename
[INCREMENT BY value]
[{MAXVALUE value | NOMAXVALUE}]
[{MINVALUE value | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{ORDER | NOORDER}]
[{CACHE value | NOCACHE}];

Drop a sequence DROP SEQUENCE sequencename;

Create a B-tree index CREATE INDEX indexname
ON tablename(columnname,. . .);

Create a bitmap index CREATE BITMAP INDEX indexname
ON tablename (columnname, . ..);

Create a function-based index CREATE INDEX indexname
ON tablename (expression);

182

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

D A T A B A S E P R E P A R A T I O N

This chapter assumes you have executed the JustLee Books database script, JLDB_Build_5.sql, as
instructed in Chapter 5.

S E Q U E N C E S

A sequence is a database object you can use to generate a series of integers. These
integers are most commonly used to generate a unique primary key for each record or
for internal control purposes. A brief overview of these two concepts follows.

When you use values generated by a sequence as a primary key, there’s no
true correlation between the number assigned to a record and the entity it represents.
However, depending on the parameters used to create the sequence, database users can be
assured that no two records have the same primary key value. Ensuring that primary key
values aren’t duplicated is especially important if different users are assigned the task of
entering records in a database table because they might attempt to assign the same primary
key value to different records. For example, if several customer service representatives are
entering new customers at the same time, how are customer numbers assigned? Are all the
customer service representatives in the same room, asking one another “What number did
your last customer receive?” Not likely. Chances are that they’re using a sequence, so each
customer service representative can be certain that every customer number is unique.

N O T E

When a database-generated value is used as a primary key value, it’s often referred to as a surrogate
key. If existing data, such as a book ISBN, is used to provide the table’s primary key value, it’s often
referred to as a natural key.

TABLE 6-1 Overview of Chapter Contents (continued)

Description Command Syntax

Create an index organized table CREATE TABLE tablename
(columnname datatype,
columnname datatype)
ORGANIZATION INDEX;

Rename an index ALTER INDEX indexname
RENAME TO newindexname;

Drop an index DROP INDEX indexname;

Create a synonym CREATE [PUBLIC] SYNONYM synonymname
FOR objectname;

Drop a synonym DROP [PUBLIC] SYNONYM synonymname;

183

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A sequence can also be used to provide business and auditing controls. Every
organization should have some control mechanisms to avoid problems with transaction
auditing, embezzlement, and accounting errors. Most organizations use sequential numbers
to track checks, purchase orders, invoices, and anything else used to record financial
events. With sequential numbers, an auditor can determine whether items such as checks
or invoices are missing, which can reveal accounting problems—unrecorded transactions or
employees obtaining blank checks or invoices for their own use, for example.

Creating a Sequence
You create a sequence with the CREATE SEQUENCE command, using the syntax shown
in Figure 6-1. Optional commands are shown in square brackets. Curly brackets indicate
that one of the two options listed can be used, but not both.

FIGURE 6-1 Syntax of the CREATE SEQUENCE command

Notice that most items in a CREATE SEQUENCE command are optional; not much is
required to create a basic sequence. The statement shown in Figure 6-2 creates a
sequence named CUSTOMERS_CUSTOMER#_SEQ.

FIGURE 6-2 Create a sequence

You might have some questions about this sequence. By what amount will the
generated numbers be incremented? When will the sequence run out of numbers
to generate? What number will be the first one generated? Because the statement in
Figure 6-2 doesn’t set any options, the default values for options are in effect. This is why
understanding all the option settings before creating a sequence is important. Take a
closer look at each syntax element in Figure 6-1. Note that some elements, such as
CACHE, must indicate a value (how many numbers to generate and store in memory),
whereas other options, such as NOCACHE, don’t need a value indicated.

The CREATE SEQUENCE keywords are followed by the name for identifying the
sequence. A standard naming convention is including _seq at the end of the name to make
it easier to identify as a sequence.

The INCREMENT BY clause specifies the interval between two sequential values.
For checks and invoices, this interval is usually 1. However, for sequences representing

184

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

credit card or bank account numbers, for example, the interval might be much larger so
that no two account numbers are similar. (An interval such as 13,519, for instance,
might be more appropriate for this purpose.) If the sequence is incremented by a
positive value, the values the sequence generates are in ascending order. However, if a
negative value is specified, the values the sequence generates are in descending order. If
you need values in descending order, you must include the keywords INCREMENT BY
and provide a negative value. If the INCREMENT BY clause isn’t included when the
sequence is created, the default setting is used, which increases the sequence by one for
each integer generated.

The START WITH clause establishes the starting value for the sequence. Oracle 12c
begins each sequence at 1 unless another value is specified in the START WITH clause.
For example, if you want all customer numbers to consist of four digits, you can assign the
value 1000 to the START WITH clause to avoid assigning account numbers of fewer than
four digits to the first 999 customers.

T I P

The START WITH value is critical if you have existing data. If you’re importing existing data into a new
database, you need to consider what values exist for columns the sequence will populate. For example,
if you already have customer numbers from 1000 to 2500, you need to set a START WITH value of
2501 for the sequence used to populate the Customer Number column.

Continuing with the syntax shown in Figure 6-1, the MINVALUE and MAXVALUE
clauses establish a minimum or maximum value for the sequence. If the sequence is
incremented with a positive value, using the MINVALUE clause doesn’t make sense. In this
case, the sequence value won’t go below the START value, so the START value is the
minimum value. By the same logic, you might assume if the sequence is incremented with
a negative value (for descending order), a MAXVALUE clause isn’t necessary. However,
this isn’t the case. If a negative increment is used and you set a MINVALUE, the
MAXVALUE must also be set. Typically, MAXVALUE is set to the same value as the
START value.

By default, if you don’t specify minimum and maximum values, Oracle 12c assumes
the NOMINVALUE and NOMAXVALUE options are used. When the NOMINVALUE option
is assumed—or assigned—the lowest possible value for an increasing sequence is 1, and
the lowest possible value for a decreasing sequence is -10^26, or -100,000,000,000,000,
000,000,000,000. For the NOMAXVALUE option, 10^27, or 1,000,000,000,000,000,000,
000,000,000, is the highest possible value for an ascending sequence, and -1 is the highest
possible value for a descending sequence.

The CYCLE and NOCYCLE options determine whether Oracle 12c should begin
reissuing values from the sequence after reaching the minimum or maximum value. If the
CYCLE option is specified and Oracle 12c reaches the maximum value for an ascending
sequence or the minimum value for a descending sequence, the CYCLE option initiates
the cycle of numbers again. If the sequence is being used to generate values for a primary
key, cycling can cause problems if the sequence tries to assign a value that already exists
in the table.

185

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

However, some organizations reuse check numbers, order numbers, and so forth after
an extended period instead of letting these numbers become astronomically large.
Therefore, the sequence must be allowed to reuse the same sequence of numbers. If a user
doesn’t specify a cycle option, Oracle 12c applies the default NOCYCLE option to the
sequence. If the NOCYCLE option is in effect, Oracle 12c doesn’t generate any numbers
after the minimum or maximum value has been reached, and an error message is returned
when the user requests another value from the sequence.

The ORDER and NOORDER options are used in application cluster environments,
in which multiple users might be requesting sequence values at the same time during large
transactions (as when printing a large quantity of checks or invoices). The ORDER option
instructs Oracle 12c to return sequence values in the same order in which requests are
received. If this option isn’t specified in the CREATE SEQUENCE command, the default
NOORDER option is assumed. When the sequence is being used to generate a primary
key, the order of sequence values isn’t a problem because each value is still unique.

Generating sequence values can slow down processing requests from other users,
especially if large volumes of these values are requested in a short period. If the
NOCACHE option is specified when the sequence is created, each number is generated
when the request is received. However, if an organization’s transactions require large
amounts of sequential numbers throughout a session, the CACHE option can be used to
have Oracle 12c generate a set of values ahead of time and store them in the server’s
memory. Then, when a user requests a sequence value, the next available value is
assigned—without Oracle 12c having to generate the number. On the other hand, if the
CACHE option isn’t specified, Oracle 12c assumes a default option of CACHE 20 and
stores 20 sequential values in memory automatically for users to access.

When working with sequences and cached values, remember that when a value is
generated, it has been assigned and can’t be regenerated until the sequence begins a new
cycle. Therefore, if Oracle 12c caches 20 values, the values have been generated
regardless of whether they’re actually used. If the system crashes, or if users don’t use the
values, these generated values are lost. If the sequence is used for internal control
purposes, some gaps in the sequence could be caused by nonuse after a system crash.
These gaps can’t be documented, which can be a cause for concern. For example, suppose
50 sequential numbers to be assigned as order numbers are cached. After a few orders
have been received, the Oracle 12c server crashes and has to be restarted. All unassigned
numbers are now lost, and a gap in the order number sequence results. Gaps might also
appear if transactions are rolled back because the sequence value is already considered
used and can’t be returned for “reuse.”

Sequences aren’t assigned to a specific column or table. They are independent objects
and, therefore, different users can use the same sequence to generate values that are
inserted into several different tables. In other words, the same sequence could be used to
generate order numbers and customer numbers. This use results in gaps in the sequence
values appearing in each table. Although gaps aren’t a concern if the values are used for a
primary key column that requires only unique values, they’re a problem if the sequence
values are used for internal control purposes. If the sequence’s purpose is to provide a
means for auditing control and to make certain no checks, invoices, and so on are missing,
a sequence should be used for only one table, and the generated values shouldn’t be
cached.

186

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Next, take a look at an example of how sequences can work. All orders placed by
JustLee Books customers are assigned a four-digit number to uniquely identify each order.
As the sales volume increases, multiple data entry clerks enter orders in the ORDERS
table. Therefore, two clerks could try to enter the same order number if they’re assigning
order numbers manually. Although the PRIMARY KEY constraint for the ORDERS table
prevents two orders from having the same number, it still slows down data entry because
one of the clerks must choose a different order number and then reenter the order. To
avoid this problem, you need to create a sequence to generate the order numbers used in
the ORDERS table, following these guidelines:

• The sequence should be named ORDERS_ORDER#_SEQ to identify it as a
sequence object created to generate order numbers for orders in the
ORDERS table. (Using this naming scheme isn’t an absolute requirement,
however. Although the name was assigned to indicate its purpose, the
sequence value generated can still be used in any table.)

• The INCREMENT BY clause must instruct Oracle 12c that each generated
number should be increased by the value of 1.

• Because the last order number stored in the ORDERS table is 1020, the
sequence needs to start at 1021 so that there’s no gap in order numbers and
no previously assigned value is duplicated.

• Oracle 12c should also be instructed not to cache any values in memory,
which means each value is generated only when it’s requested.

• The CYCLE option must indicate that the sequence values can’t be reused
after the maximum value has been reached.

For any clause not included explicitly, the default values are in effect. The command
to create this sequence is shown in Figure 6-3.

FIGURE 6-3 Generate a sequence for order numbers

You can verify which sequences exist by querying the USER_OBJECTS data
dictionary object with a SELECT statement, as shown in Figure 6-4. This statement
produces a list of all existing sequences.

187

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 6-4 Query USER_OBJECTS to verify existing sequences

N O T E

Results will vary, depending on the Oracle account you use. If you’re using an Oracle administrator
account, such as SYSTEM, you receive more rows of output displaying sequences generated
automatically during the database installation.

T I P

The USER_OBJECTS table contains information on all existing objects, including tables, sequences,
indexes, and views. You can use the WHERE clause of this query to list only the type of objects you
need to see. The type of object must be entered in uppercase characters, as all data stored in the data
dictionary is in uppercase.

To verify each setting for sequence options, you can query the USER_SEQUENCES
data dictionary object, as shown in Figure 6-5. This query is also a quick way to identify
which value is the next one to be assigned in the sequence—without generating a
number accidentally. The next value to be assigned in a sequence created with the
NOCACHE option is indicated in the LAST_NUMBER column in the SELECT query’s
results.

188

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 6-5 Verifying sequence option settings

N O T E

Several figures in this chapter have many columns in the output. To improve readability, some columns
have been resized or eliminated. For this reason, your output might vary slightly from what’s shown in
these figures.

Using Sequence Values
You can access sequence values by using the two pseudocolumns NEXTVAL and CURRVAL.
Pseudocolumns are data associated with table data, much like columns, but aren’t physical
columns stored in the database. The pseudocolumn NEXTVAL (NEXT VALUE) is used to
actually generate the sequence value. In other words, it calls the sequence object and requests
the value of the next number in the sequence. After a value is generated, it’s stored in the
CURRVAL (CURRENT VALUE) pseudocolumn so that you can reference it again.

Next, you use the NEXTVAL pseudocolumn to record a new order, using the
ORDERS_ORDER#_SEQ sequence created earlier. An order is received from customer 1010
on April 6, 2009, for one copy of Big Bear and Little Dove to be shipped to 123 West Main,
Atlanta, GA 30418. To process the order, the first step is placing the order information in the
ORDERS table. Figure 6-6 shows the command to add the order to the ORDERS table.

FIGURE 6-6 Inserting a row using a sequence to provide a PRIMARY KEY value

189

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 6-6, the orders_order#_seq.NEXTVAL reference in the VALUES
clause instructs Oracle 12c to generate the next sequential value from the
ORDERS_ORDER#_SEQ sequence. Because the reference is listed as the first
column of the VALUES clause, the generated value is stored in the first column of
the column list, identified in the INSERT INTO clause as order#. The NEXTVAL
pseudocolumn is preceded by the sequence name, which identifies the sequence
that should generate the value. Figure 6-7 shows the order added to the ORDERS
table.

Row added by
using a sequence value

FIGURE 6-7 Order added using a sequence value for the Order#

After the row has been added to the ORDERS table, you can use the SELECT
command to view the order number assigned to the new order. The next step is to add the
ordered item, Big Bear and Little Dove, to the ORDERITEMS table.

N O T E

If an error message occurs when you try to insert the new order, make certain the order number doesn’t
exist already. If it does, use the DELETE command to remove the existing row.

When adding a book to the ORDERITEMS table, the order number must be
entered. One approach is to query the ORDERS table to determine the number
assigned to the order. However, because the user didn’t generate another number by
referencing the NEXTVAL pseudocolumn again, the assigned order number is still
stored as the value in the CURRVAL pseudocolumn. The CURRVAL value of a
sequence is the last value the sequence generated in the user session. Therefore, you
can use CURRVAL’s contents to add the order number to the ORDERITEMS table

190

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

without having to recall the assigned order number. Use the INSERT INTO command
shown in Figure 6-8 to insert the order number, item number, ISBN, quantity, and
“paideach” values in the ORDERITEMS table.

FIGURE 6-8 Using CURRVAL to insert an order detail row

The command shown in Figure 6-8 instructs Oracle 12c to place the value stored in
the CURRVAL pseudocolumn for the ORDERS_ORDER#_SEQ sequence in the first
column of the ORDERITEMS table. Any reference to CURRVAL doesn’t cause Oracle 12c
to generate a new order number. However, if the example in Figure 6-8 had referenced
NEXTVAL, a new sequence number would have been generated, and the order number
entered in the ORDERITEMS table wouldn’t have been the same as the order number
already stored in the ORDERS table. Figure 6-9 shows CURRVAL inserted in the
ORDERITEMS table.

FIGURE 6-9 Verifying the CURRVAL value

191

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

When a user logs in to Oracle 12c, no value is initially stored in the CURRVAL pseudocolumn; the
current value is NULL. After a NEXTVAL call has been issued to generate a sequence value, CURRVAL
stores that value until the next value is generated. CURRVAL contains only the last value generated.

Setting and Altering Sequence Definitions
Oracle 12c provides a new feature that allows a sequence CURRVAL or NEXTVAL to be
set as the default value of a column. A few rules will apply:

• The sequence must be created before being referenced in the default
expression of a column.

• If the sequence is dropped, the default expression referencing the sequence
must also be removed to avoid errors upon insert operations affecting the
column.

• If a value is provided for the column in an insert operation, the default
sequence value will not be used.

Figure 6-10 displays both Create Sequence and Create Table statements that will
enable the demonstration of using a sequence value as a default setting. Note that the
sequence command is executed first to ensure the object exists prior to being referenced
in the Create Table command.

FIGURE 6-10 Create sequence and table with default value using a sequence

Now that the objects and the default column value setting is in place, execute the
Insert statements in Figure 6-11 to confirm the effect of different styles of Insert
statements on the default value setting.

12c

192

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 6-11 Execute Inserts to test sequence default value

Perform a query to review the rows inserted as shown in Figure 6-12. Notice that if the
Insert statement specifies DEFAULT or excludes the column with the default value setting,
the default setting using the sequence value will be used for the column with the default
setting (col1). However, notice that the last Insert supplied a value of 222 for col1 and the
default setting was ignored and the specified value was used. Keep in mind that if a NULL
was specified, then a NULL would be set as the value of col1. Therefore, if the column with
the default value setting is a primary key column, the developer must take steps to ensure
DML activity on this column does not specify values and perhaps add a NOT NULL column
constraint to avoid issues.

FIGURE 6-12 Execute a query to review values inserted

193

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Altering Sequence Definitions
You can change settings for a sequence by using the ALTER SEQUENCE command.
However, any changes are applied only to values generated after the modifications are
made. The only restrictions that apply to changing the sequence settings are as follows:

• The START WITH clause can’t be changed because the sequence would have
to be dropped and re-created to make this change.

• The changes can’t make previously issued sequence values invalid. (For
example, they can’t change the defined MAXVALUE to a number less than a
sequence number that has already been generated.)

As shown in Figure 6-13, the ALTER SEQUENCE command follows the same syntax as
the CREATE SEQUENCE command. Only the options that need to be added or modified
must be included in the ALTER SEQUENCE command. Any options you don’t specify in
the ALTER SEQUENCE command remain at their current settings.

FIGURE 6-13 Syntax of the ALTER SEQUENCE command

Suppose management decides that all order numbers should increase by a value of 10
rather than 1. Figure 6-14 shows the command to change the INCREMENT BY setting for
the ORDERS_ORDER#_SEQ sequence.

FIGURE 6-14 Command to change the INCREMENT BY setting for a sequence

Because no other settings were changed in this command, their values are unaffected.
You can view the new setting for the sequence by using the USER_SEQUENCES data
dictionary object, as shown in Figure 6-15. The LAST_NUMBER column now indicates that

194

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the next number to issue from the sequence is 1031, which is 10 more than the start value
of 1021.

Increment value modified

FIGURE 6-15 New settings for the ORDERS_ORDER#_SEQ sequence

As you begin experimenting with sequences, you can use the Oracle 12c DUAL table
to call the NEXTVAL and CURRVAL sequence values. The DUAL table is available for
performing queries that aren’t retrieving table data. A SELECT statement requires both a
SELECT and FROM clause to execute in Oracle 12c. However, the data you retrieve might
not be stored in a table. For example, if you want to retrieve the current system date, you
can use the DUAL table in a query, as shown in Figure 6-16. If the FROM clause isn’t
included in the query, the statement generates an error.

FIGURE 6-16 Using the DUAL table

The DUAL table can assist in experimenting with sequences because you don’t need to
complete INSERT commands to test the generated sequence values. The statements shown
in Figure 6-17 demonstrate testing sequence values by using the DUAL table to complete
the sequence call.

195

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 6-17 Testing sequence values with the DUAL table

Removing a Sequence
To delete a sequence, use the DROP SEQUENCE command. Figure 6-18 shows the syntax
of this command.

FIGURE 6-18 Syntax of the DROP SEQUENCE command

When a sequence is dropped, it doesn’t affect any values previously generated and
stored in a database table. When the DROP SEQUENCE command is executed
successfully, the message shown in Figure 6-19 is displayed.

196

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 6-19 Dropping the ORDERS_ORDER#_SEQ sequence

To verify that the sequence no longer exists, query the USER_SEQUENCES data
dictionary object, as shown in Figure 6-20.

No sequences exist

FIGURE 6-20 Verify that the sequence is removed

Use Identity Columns Instead of Sequences for Primary Key Columns
Oracle 12c introduces a new column type referred as an identity column. This feature has
been available in other databases for some time but this is new for Oracle. An Identity
Column is particularly suited for use as primary key column values in which random or
surrogate values are needed to serve as a unique id for each row. Creating an Identity
Column simplifies the process of establishing and managing a primary key column for a
table. A few items to keep in mind regarding Identity Columns include:

• Only one Identity Column defined per table is allowed.
• A DEFAULT clause cannot be assigned to the same column (an identity

definition automatically creates a sequence and default setting for the
column).

12c

197

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• A NOT NULL and Unique constraint are automatically applied on a column
defined as an Identity Column.

• An Identity Column must use the NUMBER data type.
• The default setting implicitly set on a column by an Identity Column

assignment will enforce an always option, so a value cannot be specified to
Insert into the column.

Figure 6-21 displays a Create Table statement with the option of “GENERATED AS
IDENTITY” assigned to the first column, which will serve as the primary key column.

FIGURE 6-21 Create table with an Identity Column

Three INSERT statements and their results as shown in Figure 6-22 and Figure 6-23
demonstrate that the Identity Column works similarly to a DEFAULT setting using a
sequence except it will not allow a value to be specified for the column.

FIGURE 6-22 Test inserts on Identity Column

198

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 6-23 Columns values resulting from inserts

N O T E

Many Oracle developers are adopting the use of Identity Columns for primary key columns in new
projects, as well as assigning default settings on primary key columns in existing applications, which
allows the removal of triggers that are currently used to populate primary key columns from sequences.

I N D E X E S

An Oracle 12c index is a database object that stores a map of column values and the
ROWIDs of matching table rows. A ROWID is the physical address of a table row.
A database index is much like the index at the end of this textbook. If you look up a topic
such as “primary key,” you can scan the handful of alphabetically sorted index pages
quickly to determine the page location for this topic. If no index existed, you would need
to scan the entire textbook to find references to this topic, which could be time
consuming and tedious. In a similar way, database indexes make data retrieval more
efficient.

A common challenge in managing databases is improving data retrieval speed. As
tables become populated with many rows, processing the operations involved in query
searches (WHERE conditions) and sorting (ORDER BY and joins) takes increasing
amounts of time. Much of this increase in execution time is caused by disk I/O or disk
reads (reading data from physical disk drives).

N O T E

You explore query options for data searching and sorting in more depth in Chapters 8 and 9.

A CREATE TABLE statement in Oracle 12c by default creates a heap-organized
table, which is an unordered collection of data. As rows of data are inserted, they’re
physically added to the table in no particular order. As rows are deleted, the space can be

199

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

reused by new rows. Therefore, if a search condition such as “WHERE zip = 90404” is
included in a SELECT statement, a full table scan is performed. In a full table scan, each
row of the table is read, and the zip value is checked to determine whether it satisfies the
condition. Even if the table contains 10 million rows, every single row is read into
memory and reviewed.

This example raises several important issues about query performance and the need
for indexes:

• First, disk I/O is typically the largest factor in a query’s total execution time.
Indexes are the primary means of reducing disk I/O.

• Second, if data of the column used in a search condition has high selectivity
or cardinality (meaning a large number of distinct values), the full table scan
results in reading many more rows than needed. For example, if only 100
rows contain a zip value of 90404, more than nine million rows that don’t
match the condition are read.

N O T E

Much of the Oracle documentation uses the term “cardinality” instead of “selectivity” to describe the level
of distinct values in a table column. If a column contains many distinct values, it is described as having
high cardinality.

• Third, the amount of buffer pool space used to hold the full table data affects
other system users.

The database buffer pool serves as the database server’s shared cache memory area.
As users perform SQL queries, the data is placed in memory and can be reused from
memory for quicker retrieval instead of performing disk I/O operations again. As the
buffer space fills, previous query data is cleared to make space for more recent query
data. A full table scan on a large table could use a lot of buffer space and, therefore, clear
a large amount of cached data and cancel the benefits of data caching.

Many of these issues can be addressed by applying indexes to table columns. Oracle
12c provides a number of different indexes. To delve into the functionality and physical
structure of an index, in the following sections you learn about the B-tree index, which is
the default index structure, and the bitmap index. These indexes are the two main
physical index structures used in an Oracle database. Following this discussion, two other
index variations based on usage goals are introduced: function-based indexes and index
organized tables.

B-Tree Indexes
The B-tree (balanced-tree) index is the most common index used in Oracle. You can
create this type of index with a basic CREATE INDEX statement. For example, many
queries on customer data search for specific zip code values or a range of zip code values.
Figure 6-24 shows the SQL statement used to create an index on the Zip column of the
CUSTOMERS table.

200

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 6-24 Creating an index on the Zip column

Now that you have an index, examine the organization of a B-tree index. Figure 6-25
depicts the organization of a B-tree index, using the zip code example.

B-tree index

Leaf blocksBranch blocks

Search for zip
code of 90404

zip <= 83000
zip > 83000

49006
60606

ROWID Table
ROWID
ROWID

zip <= 31000
zip > 31000

(root block)

zip <= 45000
zip > 45000

02110
07962

ROWID
ROWID
ROWID. . .

. . .

83707
90404

ROWID
ROWID
ROWID. . .

31206
32306

ROWID
ROWID
ROWID. . .

FIGURE 6-25 B-tree index organization

Data in the Oracle database is stored in basic structures called data blocks. The
amount of data a block can contain is determined by the size setting, defined in the
database configuration. Both indexes and table data are stored in data blocks. The index
begins with the root node block, which provides the initial breakdown or ranges of column
values. The upper blocks (branch blocks) of a B-tree index contain index data that points
to lower-level index blocks. The branch blocks continue to provide value breakdowns until
the ranges are narrow enough to be divided into block-wide ranges (leaf blocks). The
lowest-level index blocks (leaf blocks) contain every indexed data value and a
corresponding ROWID for locating the actual table row. The leaf blocks are doubly linked:
to a branch block as well as to previous and next leaf nodes to support range value
searches and specific (equality) value searches.

So for a query searching for the specific zip code value 90404, branch 1, branch 2,
and leaf 4 blocks are read. At this point, the ROWID (pointer to a table row) is used to
read the matching data block and the identified row from the CUSTOMERS table. In total,

201

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

four data blocks are read to resolve the query (assuming a single row matches the
specified zip code value).

What if the search finds two matching rows? Two ROWIDs are then identified in the leaf 4
block read, and if the two table rows are stored on two different table data blocks, the read then
involves one additional data block or a total of five data blocks. In contrast, if the CUSTOMERS
table consists of 100,000 data blocks, a full table scan requires reading 100,000 rather than four
or five data blocks! As you can see, using indexes reduces disk I/O dramatically.

N O T E

A B-tree index is referred to as a “balanced” index because it attempts to make all leaf blocks have
equal depth, so every value search should result in an equal number of index block reads.

An index can be created implicitly by Oracle 12c or explicitly by a user (as you did
with the previous CREATE INDEX statement). Oracle 12c creates an index automatically
when a PRIMARY KEY or UNIQUE constraint is created for a column. Because both these
constraints enforce uniqueness, the purpose of adding the index is to allow Oracle 12c to
determine whether a value exists in a table without having to perform a full table scan.
Oracle 12c accesses the index whenever a value is inserted into or changed in a column
designated as a primary key column or a column that can contain only unique values.

T I P

If you’re adding a PRIMARY KEY or UNIQUE constraint on a column that’s already involved in another
constraint, Oracle 12c might not generate an index for the column automatically. Be careful to confirm
creation of the index. You learn how to check the data dictionary for index information later in this chapter.

So if the purpose of an index is to improve data retrieval efficiency, why not just
create an index for every column? Although indexes can speed up row retrieval, their use
isn’t always appropriate for the following reasons:

• Because an index is a database object based on table values, Oracle 12c must
update it every time a DML operation is performed on an underlying table.
Therefore, if you have a table that’s modified (updates, inserts, deletes)
frequently, the speed of processing the update slows down because Oracle 12c
must now update both the table and the index. Furthermore, if a table has 10
indexes and a row is added, all 10 indexes must be updated separately.

• B-tree indexes are typically beneficial only if a small percentage of the table is
expected to be returned in query results. Because having an index requires Oracle
12c to examine the index to identify records meeting the criteria and then retrieve
rows from the actual table, large result sets could require Oracle 12c to do
additional work. If a majority of table blocks need to read to retrieve the requested
data, index reads might actually add more block reads than a full table scan. In
fact, having an index in this situation might slow down data retrieval. Various
users and publications have guidelines on indexes. For example, some guidelines

202

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

state that indexes should be used if the query condition will return less than 10% of
the table rows. These guidelines don’t apply to all situations, however; the best
way to prove whether an index is beneficial is to test it.

• Typically, small tables don’t benefit from indexes. In this case, a full table
scan might be as fast as the combined effort of reading index blocks and then
the appropriate table blocks.

• More storage space is required for the database because indexes are
additional database objects.

Understanding the statement execution plan and the database optimizer is critical in
analyzing index usage and applicability. The execution plan or explain plan identifies the
steps the database system uses to resolve the query, including whether an index scan or
full table scan is used. The optimizer provides the logic the database system uses in
determining the best path of execution, based on available information. The optimizer
considers the distribution of data values to determine whether using an index is beneficial.
In other words, just because an index exists doesn’t mean the system will use it.

N O T E

Performance-tuning topics are beyond the scope of this textbook. The concepts introduced in this
section and in Appendix E provide just the fundamentals to give you an overview of performance tuning.

To see that an index might not be used, examine the explain plan of a query using a
zip code search on the CUSTOMERS table, shown in Figure 6-26. After issuing a query in
SQL Developer, click the Execute Explain Plan button to display the explain plan.

Execute Explain Plan button

Full table scan performed;
index ignored

FIGURE 6-26 View the explain plan indicating a full table scan

203

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The explain plan indicates that a full table scan is used to search for records with a
matching zip code. The CUSTOMERS_ZIP_IDX index created earlier isn’t used to perform
the query, probably because the table contains very few rows of data. Reading and
checking all rows in the table is faster than the two-step process of navigating the index to
find the ROWIDs for the rows matching the condition, and then retrieving those rows from
the CUSTOMERS table.

What does the explain plan look like if the index is used? Figure 6-27 shows the same
query with the addition of an optimizer hint. The hint instructs Oracle to use an index if
one is available. (Hints are also beyond the scope of this textbook; however, Figure 6-27
shows you what an explain plan indicating an index scan looks like.)

Index used; table rows accessed
by using ROWID values

FIGURE 6-27 View the explain plan indicating an index scan

Given these considerations, you should first weigh the benefits of improving query
performance against the decreased performance for data manipulation actions. Determine
the volume of queries and DML statements regularly executed on the database and which
type of statement has performance priority. In some circumstances, database query
activity is the priority; that is, the database is used mainly to support queries, and little
DML activity occurs or is of less importance in terms of performance. Under these
circumstances, indexes should be considered and tested for columns used frequently in
WHERE conditions or for sorting operations, including table joins.

On the other hand, if database operations involve more DML actions than query
actions, and if DML performance is the priority, index creation should be minimized.
However, consider using unique indexes on appropriate columns because this type of
index assists performance by verifying that duplicate values aren’t entered in a column
during DML operations.

As index candidate columns are identified, perform tests to determine whether the
index actually improves data retrieval. Testing involves measuring query execution time
with and without the index and comparing the results. To do this, you can use tools such
as the TIMING feature and review the explain plan.

204

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

The TIMING feature is explained in Appendix E.

N O T E

Sorting operations include using an ORDER BY clause and table joins. Sorting many rows for output
can be memory and processor intensive because data rows are manipulated into order in memory,
particularly if rows contain large amounts of selected data. Indexes can improve sorting operations by
allowing rows to be retrieved in sorted order. Join operations, which link data between two tables,
involve sorting operations. These operations assist in matching row values of the two tables by ordering
rows according to the columns used to join the tables.

A unique index is typically created automatically when a PRIMARY KEY or UNIQUE
constraint is defined on a column. Unique indexes can also be explicitly created by
including the UNIQUE keyword in the CREATE INDEX statement, as shown in Figure 6-28.
This statement creates a unique index on the Title column of the BOOKS table.

FIGURE 6-28 Explicitly creating a unique index

If an index is created to improve performance on large sorting operations, consider
whether the sort order required is ascending or descending. By default, an index is created
with an ascending order on the index column value. However, a descending sort can be
used in an index by including a DESC sort option when you create the index, as shown in
Figure 6-29.

FIGURE 6-29 Indicating a descending sort for index values

205

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The existence of NULL values in a column must also be considered in creating indexes
for a column that’s used in search conditions frequently. A B-tree index doesn’t include
any rows with NULL values in the indexed column. Therefore, if the column contains a lot
of NULL values, an index might be useful because it eliminates searching through all the
NULL value rows with a full table scan. However, if your search condition is hunting for
NULL values (that is, WHERE zip IS NULL), a full table scan is performed regardless of
whether a B-tree index exists on the column. In this case, a function-based index, covered
later in this chapter, could be useful.

The indexes discussed so far consist of only a single column. However, indexes can
include multiple columns of a table. These indexes are called composite or concatenated
indexes. For example, an index on customer name could be created by using the
statement shown in Figure 6-30.

FIGURE 6-30 Creating a composite index

This index could improve the performance of queries that include a search condition
on both the Lastname and Firstname columns. Generally, a composite index is more
efficient than creating two separate single-column indexes because less I/O is required to
read a single index. In addition, the selection results of two separate indexes don’t have to
be combined. In this case, the indexed key value contains both the first and last name of
the customer. Putting the most selective column first typically produces the most efficient
result. This index can also be used on search conditions involving only the leading (first)
column—Lastname, in this example.

N O T E

The maximum number of columns that can be included in a B-tree index is 32. A bitmap index can
contain up to 30 columns.

Bitmap Indexes
A bitmap index varies in structure and use from a B-tree index. This index is useful for
improving queries on columns that have low selectivity (low cardinality, or a small

206

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

number of distinct values). The index is a two-dimensional array containing one column
for each distinct value in the column being indexed. Each row is linked to a ROWID and
contains a bit (0 or 1) indicating whether the column value matches this index value. For
example, the CUSTOMERS table contains a Region column that can have one of eight
possible values: N, NW, NE, S, SE, SW, W, or E. You can create a bitmap index on the
Region column with the command shown in Figure 6-31, which adds the keyword BITMAP
to the CREATE INDEX command.

FIGURE 6-31 Creating a bitmap index on the Region column

Figure 6-32 illustrates the organization of a bitmap index using the Region column
example.

FIGURE 6-32 Organization of a bitmap index

Notice in Figure 6-32 that each row has only one bit turned on (set to 1), which
indicates the Region value for the corresponding row of the CUSTOMERS table. The
bitmap index structure can be particularly useful in queries involving compound
conditions (using AND and OR operators).

For example, a WHERE clause might attempt to identify all male customers in the NW
region (assuming there’s a gender column in the CUSTOMERS table). In this type of
query, if a bitmap index exists on both columns, the bitmap index information for the two
column values (Gender ¼ ‘M’, Region ¼ ‘NW’) can be combined to identify the rows to be
queried from the table.

207

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When you use bitmap indexes, query performance improvements are offset by less
efficient DML statement execution, as with B-tree indexes. Bitmap indexes tend to
decrease DML performance when new values are added to the indexed column because a
new bitmap column must be added to the index.

Function-Based Indexes
A function-based index can be useful if a query search is based on an expression
(calculated value) or a function. After an expression or function is used on the column in
the search condition, a non-function-based index is ignored. For JustLee Books, one
commonly used search criterion is profit. Management might be looking for values that fall
above or below a certain dollar value for profit. To speed up the retrieval of rows meeting a
given condition, you can create an index based on the calculated profit for each book. The
only difference in the CREATE INDEX command is that the expression or function on
which the index is based is used in the ON clause, instead of including just the column
name. For example, to create an index on the BOOKS table for the dollar profit returned
by each book, you could use the command shown in Figure 6-33.

FIGURE 6-33 Creating a function-based index

N O T E

You can create a function-based index in a B-tree structure (default) or a bitmap structure. Add the
keyword BITMAP to create the function in a bitmap structure.

A function-based index can also help improve query performance for search
conditions on NULL values. By default, NULL values in an indexed column cause that row
to not be indexed. To work around this problem, you could use a function-based index
with the NVL function (covered in Chapter 10). The NVL function simply instructs the
query to substitute a specified value if a NULL value is retrieved.

For example, JustLee Books routinely executes queries to identify orders that haven’t
been shipped. For this query, the WHERE clause checks for a NULL value in the Shipdate
column. A basic B-tree index on this column doesn’t include NULL value rows and,

208

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

therefore, results in a full table scan. However, creating a function-based index, as shown
in Figure 6-34, allows NULL values to be indexed.

FIGURE 6-34 Creating a function-based index for NULL values

In this example, the index is created by including the NULL value rows. The NVL
function converts the NULL values to the string value ‘null’ that’s stored in the index for
applicable rows. Therefore, the query search must match the same substitution action—
WHERE NVL(shipdate, 'null') = 'null'—for this index to be used.

Index Organized Tables
An index organized table (IOT) is a variation of the B-tree index structure, used as an
alternative to the conventional heap-organized table. This structure stores the entire
table’s contents in a B-tree index with rows sorted in the primary key value order. It
combines the index and table into a single structure. Search and sort operations involving
primary key column can be improved with this index. It has an advantage over other types
of indexes because only one physical database object is needed to house both the index
and data values.

The leaf blocks of an IOT contain the primary key value and the entire row of
data. A primary key is required to create an IOT because it’s used as the row
identifier. A search by ROWID isn’t required with this type of index. Because the
B-tree index becomes the table structure, an IOT is created at the time of table
creation. To create an IOT, add the keywords ORGANIZATION INDEX to the CREATE
TABLE statement. For example, if you anticipate performing many searches and sort
operations on the ISBN column of the BOOKS table, you could create an IOT, as
shown in Figure 6-35.

FIGURE 6-35 Creating an IOT for the BOOKS table

Notice that the table is named BOOKS2 to avoid conflict with the existing BOOKS
table. As with other types of indexes, an IOT can affect DML operations because the
primary key order must be maintained in this structure.

209

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Oracle 12c supports a variety of indexes, some of which are beyond the scope of this textbook. Oracle 12c
documentation on database administration and architecture covers the syntax and use of available indexes.

Verifying an Index
After an index has been created implicitly or explicitly, you can use the USER_INDEXES
data dictionary view to verify that the index exists. Figures 6-36 and 6-37 show the
commands to verify existing indexes for a specific table.

Index type;
NORMAL is the
default B-tree

structure

FIGURE 6-36 Identify indexes on the CUSTOMERS table

FIGURE 6-37 Identify indexes on the BOOKS table

210

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Your results might differ from these figures because the data dictionary listing reflects all indexes
created in your schema. (Recall that a schema is a collection of objects in a specific Oracle account.)

Querying USER_INDEXES verifies existing indexes; however, it doesn’t identify which
columns each index includes. The USER_IND_COLUMNS data dictionary view includes
information on the columns included in each index. Figure 6-38 shows the command to
list index column information for the CUSTOMERS table.

FIGURE 6-38 More index details from USER_IND_COLUMNS

Altering or Removing an Index
The only modification you can perform on an existing index is a name change. If you need to
change the name of an index, use the ALTER INDEX command, as shown in Figure 6-39.

FIGURE 6-39 Rename an index

211

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If an inappropriate index exists (for example, queries on an indexed column tend to
return a large number of rows or updates are slow), you can delete an index with the
DROP INDEX command. As mentioned, except for a name change, an index can’t be
modified; if you need to change an existing index, you have to delete and then re-create it.
Figure 6-40 shows the syntax of the DROP INDEX command.

FIGURE 6-40 Syntax of the DROP INDEX command

As with other DROP and DDL commands, after the DROP INDEX command is
executed, the statement can’t be rolled back, and the index is no longer available to Oracle
12c. Figure 6-41 shows the command to drop the BOOKS_PROFITCALC_IDX index.

FIGURE 6-41 Dropping the BOOKS_PROFITCALC_IDX index

S Y N O N Y M S

A synonym is an alternative name or alias for a database object, such as a table or a
sequence. A synonym is used for several reasons:

• A synonym gives you the convenience of not having to use a full object name,
including the schema name, if required.

• A synonym hides the actual object name, which can improve security.
• Synonyms help minimize application modification by allowing the alias to be used

in application code. When object changes are necessary (object name changes or
object schema changes, for example), you don’t have to change the application
code; instead, you can modify the synonym to identify the correct object.

Simplifying schema references can be an important benefit of using synonyms. When
a user creates an object, unless otherwise specified, it belongs to his or her schema. By
grouping objects according to the owner, multiple objects with the same name can exist in
the same database, but only if each object belongs to a different schema.

212

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, a user named Jeff creates a table called PROFITTABLE. Unless Jeff
indicates otherwise, the table is an object in the schema called Jeff. If any other user who
has permission wants to access Jeff’s table, the user must identify the table by using the
correct schema name in the FROM clause of the SELECT statement (for example,
Jeff.PROFITTABLE). If the table name isn’t prefixed by a schema name, Oracle 12c
searches for the table only in the schema of the user who issued the SELECT statement. If
a table with the same name doesn’t exist in the user’s schema, Oracle 12c returns an
error message indicating that the table doesn’t exist.

This situation can cause problems if several users must access a table frequently. In
the JustLee Books database, different users (customer service representatives) enter
orders in the ORDERS table. Before a user can enter an order into the table, he or she
must remember who actually owns the table, and then prefix the table name with the
correct schema. To simplify this process, Oracle 12c allows you to create synonyms that
serve as a substitute for an object name. The syntax of the CREATE SYNONYM command
is shown in Figure 6-42.

FIGURE 6-42 Syntax for creating a synonym

Note the following elements in Figure 6-42:

• The synonym name in the CREATE SYNONYM clause identifies the
substitute name, or permanent alias, for the object listed in the FOR clause.

• The optional PUBLIC keyword can be used so that any user in the database
can use that synonym to refer to the object.

• The object listed in the FOR clause can be the name of a table, constraint,
view, or any other Oracle 12c database object.

Create a synonym for the ORDERS table, using the statement shown in Figure 6-43.

FIGURE 6-43 Create a synonym

213

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A synonym can be a private synonym, which users use to reference objects they
own, or a public synonym, which users use to access another user’s database objects. If
you add the PUBLIC keyword to the command in Figure 6-43, any user can reference the
ORDERS table by using ORDERENTRY as the table name. Users don’t need to reference
the correct schema when a public synonym is available for an object. Because the PUBLIC
keyword allows any database user to use the synonym, only someone with database
administrator (DBA) privileges is allowed to delete the synonym. Why? To make certain
that one user doesn’t delete the synonym, which could affect the work of other users.

N O T E

User privileges are discussed in Chapter 7. This example doesn’t include the PUBLIC keyword because
most general users don’t have privileges to create and drop public synonyms.

Review the SELECT statement in Figure 6-44, which uses the synonym. The data is
actually being retrieved from the ORDERS table.

Synonym used in place of table name

FIGURE 6-44 Using a synonym

As shown in Figure 6-44, after a synonym is created, you can substitute it for the
object name in a command. When Oracle 12c tries to find that object in the database, it
takes this path:

1. It searches for an object with the same name as the synonym.
2. If no object is found, it searches for private synonyms with the synonym’s

name.
3. If no private synonym is found, it searches for public synonyms with the

synonym’s name.
4. If no public synonym is found, Oracle 12c returns an error message,

indicating that the object doesn’t exist.

214

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Many users like to create synonyms to avoid typing long or complex object names.
You can create synonyms for your personal use simply by omitting the PUBLIC keyword
from the CREATE SYNONYM clause. If the PUBLIC keyword isn’t included, the user who
created the private synonym is the only one who can use it. However, you can use a
private synonym to reference objects in someone else’s schema. For example, if user Jane
frequently references the PROFITTABLE table in user Jeff’s schema, Jane can create a
synonym for the object Jeff.PROFITTABLE, and then she doesn’t need to remember to
include the schema name when she accesses his table.

Deleting a Synonym
The DROP SYNONYM command is used to delete both private and public synonyms.
However, if the synonym being dropped is a public synonym, you must include the
keyword PUBLIC. Figure 6-45 shows the syntax of the DROP SYNONYM command.

FIGURE 6-45 Syntax of the DROP SYNONYM command.

If you attempt to drop a public synonym and forget to include the PUBLIC keyword,
Oracle 12c returns an error message, indicating that a private synonym by that name
doesn’t exist. To drop the ORDERENTRY synonym you just created, use the command
shown in Figure 6-46. After the synonym has been deleted, any reference to
ORDERENTRY in an SQL statement returns an error message indicating that the object
doesn’t exist.

FIGURE 6-46 Command to delete the ORDERENTRY synonym

N O T E

You must have DBA privileges to drop public synonyms.

215

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• A sequence can be created to generate a series of integers.
• The values generated by a sequence can be stored in any table.
• A sequence is created with the CREATE SEQUENCE command.
• Gaps in sequences might occur if the values are stored in various tables, if

numbers are cached but not used, or if a rollback occurs.
• A value is generated by using the NEXTVAL pseudocolumn.
• The CURRVAL pseudocolumn is NULL until a value is generated by NEXTVAL.
• The USER_OBJECTS data dictionary object can be used to confirm the existence

of all schema objects.
• The USER_SEQUENCES data dictionary object is used to view sequence

settings.
• A sequence value may be set as the DEFAULT value for a column.
• The ALTER SEQUENCE command is used to modify an existing sequence.

The only settings that can’t be modified are the START WITH option and any
option that would be invalid because of previously generated values.

• The DUAL table is helpful for testing sequence value generation.
• The DROP SEQUENCE command deletes an existing sequence.
• An Identity Column may be defined to manage a primary key column.
• An index can be created to speed up the query process.
• DML operations are always slower when indexes exist.
• Oracle 12c creates an index for PRIMARY KEY and UNIQUE constraints

automatically.
• An explicit index is created with the CREATE INDEX command.
• An index can be used by Oracle 12c automatically if a query criterion or sort

operation is based on a column or an expression used to create the index.
• The two main structures for indexes are B-tree and bitmap.
• The explain plan can verify whether an index is used in a query.
• Function-based indexes are used to index an expression or the use of functions

on a column or columns.
• An index organized table is a table stored in a B-tree structure to combine the

index and table into one database object.
• Information about an index can be retrieved from the USER_INDEXES and

USER_IND_COLUMNS views.
• An index can be dropped with the DROP INDEX command.
• An index can be renamed with the ALTER INDEX command.
• Except for a name change, an index can’t be modified. It must be deleted and

then re-created.
• A synonym provides a permanent alias for a database object.
• A public synonym is available to any database user.
• A private synonym is available only to the user who created it.
• A synonym is created by using the CREATE SYNONYM command.
• A synonym is deleted by using the DROP SYNONYM command.
• Only a user with DBA privileges can drop a public synonym.

216

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Description Command Syntax Example

Create a sequence to
generate a series of
integers

CREATE SEQUENCE sequencename
[INCREMENT BY value]
[START WITH value]
[{MAXVALUE value |

NOMAXVALUE}]
[{MINVALUE value |

NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{ORDER | NOORDER}]
[{CACHE value | NOCACHE}];

CREATE SEQUENCE
orders_order#_seq
INCREMENT BY 1
START WITH 1021
NOCACHE NOCYCLE;

Set column
DEFAULT value to a
sequence value

columnname datatype DEFAULT
sequencename.value

CREATE TABLE test_defval
(col1 NUMBER DEFAULT
test_defval_seq.NEXTVAL)

Alter a sequence ALTER SEQUENCE sequencename
[INCREMENT BY value]
[{MAXVALUE value |

NOMAXVALUE}]
[{MINVALUE value |

NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{ORDER | NOORDER}]
[{CACHE value | NOCACHE}];

ALTER SEQUENCE
orders_order#_seq

INCREMENT BY 10;

Drop a sequence DROP SEQUENCE sequencename; DROP SEQUENCE
orders_order#_seq;

Create an Identity
Column

CREATE TABLE tablename
(columnname NUMBER GENERATED
AS IDENTITY PRIMARY KEY,
columnname . ..);

CREATE TABLE test_ident
(col1 NUMBER GENERATED AS
IDENTITY PRIMARY KEY,
col2 NUMBER);

Create a B-tree index CREATE INDEX indexname
ON tablename

(columnname, . ..);

CREATE INDEX
customers_lastname_idx

ON customers(lastname);

Create a bitmap index CREATE BITMAP INDEX indexname
ON tablename

(columnname,. ..);

CREATE BITMAP INDEX
customers_region_idx

ON customers(region);

Create a function-based
index

CREATE INDEX indexname
ON tablename (expression);

CREATE INDEX
books_profit_idx

ON books(retail-cost);

217

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data Dictionary
View Prefix

Description

ALL_ Displays objects accessible by the user

DBA_ Displays all objects in the database

USER_ Displays objects owned by the user

V$ Displays dynamic database statistics

Review Questions

1. How can a sequence be used in a database?

2. How can gaps appear in values generated by a sequence?

3. How can you indicate that the values generated by a sequence should be in descending
order?

4. When is an index appropriate for a table?

5. What is the difference between the B-tree and bitmap index structures?

6. When does Oracle 12c automatically create an index for a table?

7. Under what circumstances should you not create an index for a table?

8. What is an IOT and under what circumstances might it be useful?

Description Command Syntax Example

Create an index
organized table

CREATE TABLE tablename
(columnname datatype,
columnname datatype)

ORGANIZATION INDEX;

CREATE TABLE
books (isbn NUMBER (10),
title VARCHAR2(30))
ORGANIZATION INDEX;

Rename an index ALTER INDEX indexname
RENAME TO newindexname;

ALTER INDEX
books_profit_idx
RENAME TO
books_profitcalc_idx;

Drop an index DROP INDEX indexname; DROP INDEX
books_profit_idx;

Create a synonym CREATE [PUBLIC] SYNONYM
synonymname

FOR objectname;

CREATE PUBLIC SYNONYM
orderentry

FOR orders;

Drop a synonym DROP [PUBLIC] SYNONYM
synonymname;

DROP PUBLIC SYNONYM
orderentry;

Syntax Guide (continued)

218

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. What command is used to modify an index?

10. What is the purpose of a synonym?

Multiple Choice

To answer the following questions, refer to the tables in the JustLee Books database.

1. Which of the following generates a series of integers that can be stored in a database?

a. a number generator

b. a view

c. a sequence

d. an index

e. a synonym

2. Which syntax is correct for removing a public synonym?

a. DROP SYNONYM synonymname;

b. DELETE PUBLIC SYNONYM synonymname;

c. DROP PUBLIC SYNONYM synonymname;

d. DELETE SYNONYM synonymname;

3. Which of the following commands can you use to modify an index?

a. ALTER SESSION

b. ALTER TABLE

c. MODIFY INDEX

d. ALTER INDEX

e. none of the above

4. Which of the following generates an integer in a sequence?

a. NEXTVAL

b. CURVAL

c. NEXT_VALUE

d. CURR_VALUE

e. NEXT_VAL

f. CUR_VAL

5. Which of the following is a valid SQL statement?

a. INSERT INTO publisher

VALUES (pubsequence.nextvalue, 'HAPPY

PRINTING', 'LAZY LARRY', NULL);

b. CREATE INDEX a_new_index

ON (firstcolumn*.02);

c. CREATE SYNONYM pub

FOR publisher;

219

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

d. all of the above

e. only a and c

f. none of the above

6. Suppose the user Juan creates a table called MYTABLE with four columns. The first
column has a PRIMARY KEY constraint, the second column has a NOT NULL constraint,
the third column has a CHECK constraint, and the fourth column has a FOREIGN KEY
constraint. Given this information, how many indexes does Oracle 12c create automatically
when the table and constraints are created?

a. 0

b. 1

c. 2

d. 3

e. 4

7. Given the table created in Question 6, which of the following commands can Juan use to
create a synonym that allows anyone to access the table without having to identify his
schema in the table reference?

a. CREATE SYNONYM thetable

FOR juan.mytable;

b. CREATE PUBLIC SYNONYM thetable

FOR mytable;

c. CREATE SYNONYM juan

FOR mytable;

d. none of the above

8. Which of the following statements is true?

a. A gap can appear in a sequence created with the NOCACHE option if the system
crashes before a user can commit a transaction.

b. Any unassigned sequence values appears in the USER_SEQUENCE data dictionary
table as unassigned.

c. Only the user who creates a sequence is allowed to delete it.

d. Only the user who created a sequence is allowed to use the value generated by the
sequence.

9. When is creating an index manually inappropriate?

a. when queries return a large percentage of rows in the results

b. when the table is small

c. when the majority of table operations are updates

d. all of the above

e. only a and c

220

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. If a column has high selectivity or cardinality, which index type is most appropriate?

a. IOT

b. B-tree

c. bitmap

d. function-based index

11. If a column has low selectivity, this means:

a. The column contains many distinct values.

b. The column contains a small number of distinct values.

c. A WHERE clause is always used in a query on the column.

d. The selectivity of a column can’t be determined.

12. Oracle 12c automatically creates an index for which type of constraints?

a. NOT NULL

b. PRIMARY KEY

c. FOREIGN KEY

d. UNIQUE KEY

e. none of the above

f. only a and b

g. only b and d

13. Which of the following settings can’t be modified with the ALTER SEQUENCE command?

a. INCREMENT BY

b. MAXVALUE

c. START WITH

d. MINVALUE

e. CACHE

14. Which node of the B-tree index contains ROWIDs?

a. branch blocks

b. root block

c. leaf blocks

d. None of the above because the primary key is used to identify rows.

15. If the CACHE or NOCACHE options aren’t included in the CREATE SEQUENCE
command, which of the following statements is correct?

a. Oracle 12c generates 20 integers automatically and stores them in memory.

b. No integers are cached by default.

c. Only one integer is cached at a time.

d. The command will fail.

e. Oracle 12c generates 20 three-digit decimal numbers automatically and stores them in
memory.

221

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. Which of the following is a valid command?

a. CREATE INDEX book_profit_idx

ON (retail-cost) WHERE (retail-cost) > 10;

b. CREATE INDEX book_profit_idx

ON (retail-cost);

c. CREATE FUNCTION INDEX book_profit_idx

ON books WHERE (retail-cost) > 10;

d. both a and c

e. none of the above

17. Which of the following can be used to determine whether an index exists?

a. DESCRIBE indexname;

b. the USER_INDEXES view

c. the INDEXES table

d. the USER_INDEX view

e. all of the above

f. none of the above

18. Which of the following isn’t a valid option for the CREATE SEQUENCE command?

a. ORDER

b. NOCYCLE

c. MINIMUMVAL

d. NOCACHE

e. All of the above are valid options.

19. What can be referenced to determine whether an index is used to perform a query?

a. USER_INDEXES view

b. query source code

c. explain plan

d. database access plan

20. Which of the following commands creates a private synonym?

a. CREATE PRIVATE SYNONYM

b. CREATE NONPUBLIC SYNONYM

c. CREATE SYNONYM

d. CREATE PUBLIC SYNONYM

Hands-On Assignments

To perform the following assignments, refer to the tables in the JustLee Books database.

1. Create a sequence for populating the Customer# column of the CUSTOMERS table. When
setting the start and increment values, keep in mind that data already exists in this table.

222

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The options should be set to not cycle the values and not cache any values, and no
minimum or maximum values should be declared.

2. Add a new customer row by using the sequence created in Question 1. The only data
currently available for the customer is as follows: last name = Shoulders, first name =
Frank, and zip = 23567.

3. Create a sequence that generates integers starting with the value 5. Each value should be
three less than the previous value generated. The lowest possible value should be 0, and
the sequence shouldn’t be allowed to cycle. Name the sequence MY_FIRST_SEQ.

4. Issue a SELECT statement that displays NEXTVAL for MY_FIRST_SEQ three times.
Because the value isn’t being placed in a table, use the DUAL table in the FROM clause of
the SELECT statement. What causes the error on the third SELECT?

5. Change the setting of MY_FIRST_SEQ so that the minimum value that can be generated is
–1000.

6. A new table has been requested to support tracking automated emails sent to customers.
Create the table and add data as described below.

• Tablename: email_log
• Columns: emailid (numeric), emaildate (datetime), customer# (numeric)
• Primary key: emailid column, define as an Identity Column
• Add the following data rows and display resulting rows (if any errors occur, explain

why the error is expected)

1. Emaildate ¼ current date, customer# ¼ 1007

2. Emailid ¼ specify to use the column default value, emaildate ¼ current date,
customer# ¼ 1008

3. Emailid ¼ 25, emaildate ¼ current date, customer# ¼ 1009

7. Create a private synonym that enables you to reference the MY_FIRST_SEQ object as
NUMGEN.

8. Use a SELECT statement to view the CURRVAL of NUMGEN. Delete the NUMGEN
synonym and MY_FIRST_SEQ.

9. Create a bitmap index on the CUSTOMERS table to speed up queries that search for
customers based on their state of residence. Verify that the index exists, and then delete
the index.

10. Create a B-tree index on the customer’s Lastname column. Verify that the index exists by
querying the data dictionary. Remove the index from the database.

11. Many queries search by the number of days to ship (number of days between the order
and shipping dates). Create an index that might improve the performance of these queries.

Advanced Challenge

To perform the following activity, refer to the tables in the JustLee Books database.
Using the training you have received and speculating on query needs, determine

appropriate uses for indexes and sequences in the JustLee Books database. Assume all tables

223

Additional Database Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

will grow quite large in the number of rows. Identify at least three sequences and three indexes
that can address needed functionality for the JustLee Books database. In a memo to
management, you should identify each sequence and index that you propose and the rationale
supporting your suggestions. You should also state any drawbacks that might affect database
performance if the changes are implemented.

Case Study: City Jail

1. The head DBA has requested the creation of a sequence for the primary key columns of
the Criminals and Crimes tables. After creating the sequences, add a new criminal named
Johnny Capps to the Criminals table by using the correct sequence. (Use any values for
the remainder of columns.) A crime needs to be added for the criminal, too. Add a row to
the Crimes table, referencing the sequence value already generated for the Criminal_ID
and using the correct sequence to generate the Crime_ID value. (Use any values for the
remainder of columns.)

2. The last name, street, and phone number columns of the Criminals table are used quite
often in the WHERE clause condition of queries. Create objects that might improve data
retrieval for these queries.

3. Would a bitmap index be appropriate for any columns in the City Jail database (assuming
the columns are used in search and/or sort operations)? If so, identify the columns and
explain why a bitmap index is appropriate for them.

4. Would using the City Jail database be any easier with the creation of synonyms? Explain
why or why not.

224

Chapter 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R7
USER CREATION AND
MANAGEMENT

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Explain the concept of data security

• Create a new user account

• Identify two types of privileges: system and object

• Grant privileges to a user

• Address password expiration requirements

• Change the password of an existing account

• Create a role

• Grant privileges to a role

• Assign a user to a role

• View privilege information

• Revoke privileges from a user and a role

• Remove a user and roles

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

Previous chapters of this textbook have introduced the creation of database objects. After
you’ve created a database, access to database objects must be assigned to users. This
chapter focuses on setting up database users, controlling their access to database objects,
and defining what actions they can perform on those objects. For example, if an employee’s
main job for JustLee Books is entering new orders, she needs access only to the customer
and order tables, and the actions she can perform on these tables should be limited to
selecting and inserting items. This chapter explains how to accomplish this type of access
assignment. You examine creating, maintaining, and dropping user accounts; granting and
revoking privileges; and simplifying the administration of privileges with roles.

Typically, these duties are performed by a database administrator (DBA) or security
officer. However, everyone involved with a database should understand the basic user
access principles covered in this chapter. For example, if you’re involved in application
development, you’ll most likely participate in determining the privileges users need to
work with applications.

Table 7-1 provides an overview of the commands covered in this chapter. The commands
are grouped by category rather than the order in which they’re discussed in this chapter.

TABLE 7-1 Overview of Chapter Contents

Description Command Syntax

Creating, Maintaining, and Dropping User Accounts

Create a user CREATE USER username
IDENTIFIED BY password;

Change or expire a
password

ALTER USER username
[IDENTIFIED BY newpassword]
[PASSWORD EXPIRE];

Drop a user DROP USER username;

Granting and Revoking Privileges

Grant object privileges to
users or roles

GRANT {objectprivilege | ALL } [(columnname),
objectprivilege (columnname)]

ON objectname
TO {username|rolename|PUBLIC}
[WITH GRANT OPTION];

Grant system privileges to
users or roles

GRANT systemprivilege [, systemprivilege, .. .]
TO username|rolename [,username|rolename, ...]
[WITH ADMIN OPTION];

Revoke object privileges REVOKE objectprivilege [, .. .objectprivilege]
ON objectname
FROM username|rolename;

226

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

D A T A B A S E P R E P A R A T I O N

If you haven’t already run the JLDB_Build_5.sql script from Chapter 5, execute the script before
attempting to work through the examples in this chapter.

C A U T I O N

Most commands in this chapter require database administrator privileges. If you’re using an account to
access a server and get an “insufficient privileges” error when the command executes, check with your
instructor. If you’re using your own installation of Oracle, use the SYSTEM user, which has DBA
privileges. The SYSTEM user is created automatically during Oracle installation.

D A T A S E C U R I T Y

Most organizations store data in some type of electronic database. For example, a bank
typically manages all customer financial accounts by using a computer database. The
news is full of stories about problems caused by unauthorized access to bank account
data, ranging from major financial losses to identity theft. Company data needs to be
protected from a variety of threats. Some threats are posed by natural disasters, such as
floods, fires, and tornadoes. However, the biggest threat to an organization’s data often
comes in the form of people—computer criminals and the organization’s own employees.
Computer criminals, sometimes referred to as attackers or cyber criminals, attempt to

TABLE 7-1 Overview of Chapter Contents (continued)

Description Command Syntax

Granting and Revoking Roles

Create a role CREATE ROLE rolename;

Grant a role to a user GRANT rolename [, rolename]
TO username [, username];

Assign a default role to a user ALTER USER username
DEFAULT ROLE rolename;

Set or enable a role SET ROLE rolename;

Add a password to a role ALTER ROLE rolename
IDENTIFIED BY password;

Revoke a role REVOKE rolename
FROM username|rolename;

Drop a role DROP ROLE rolename;

227

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

access a system illegally and then copy, manipulate, or delete its data. Employees can also
create havoc with data—often more easily because they’re assigned legitimate system
access. Disgruntled employees might justify their actions as a way of “getting even” for a
promotion they didn’t get or retaliating if they feel their employer doesn’t value them.
However, even employees with good intentions can damage an organization’s data by
deleting records accidentally or inserting records in the wrong table.

Data security is a wide-ranging topic that covers many facets of information
technology, including network access and authentication, operating system manipulation,
application security, database account management, physical protection, and user
monitoring. This chapter addresses only one area of data security—database account
management—and more specifically, it addresses creating database user accounts with
passwords and managing the specific database privileges assigned to users. The tasks
described in this chapter are important for limiting what a user can do after being logged
in to a database and minimizing any intentional or unintentional damage, yet still granting
enough rights for users to do their jobs.

Database security involves a two-stage process:

• Authentication to identify the user
• Authorization to allow the user access to objects

Authentication is the process of identifying a user attempting to connect to a system,
typically based on a username and password. This process doesn’t identify the objects the user
can access. In this chapter, you address authentication by creating a user who can connect to
the database via SQL* Plus. Authorization is granting object privileges to users based on their
identities, which is addressed by issuing GRANT commands for specific privileges.

Now take a look at database user management in the context of a newly hired
employee at JustLee Books. This chapter traces the steps for creating a database account
for that employee and then granting the user privileges to access database data.

C R E A T I N G A U S E R

When an employee is hired at JustLee Books, his or her supervisor notifies the DBA of the new
employee’s name and requests an Oracle 12c database account. The supervisor also tells the
DBA the kind of duties the new employee needs to perform. Based on the employee’s job
responsibilities, the DBA determines what database objects he or she can access.

Creating Usernames and Passwords
The first step in creating a new user account is determining the username and password.
By default, a username can contain up to 30 characters, including numbers, letters, and
the underscore (_), dollar sign ($), and number (#) symbols. To create a user account,
you use the CREATE USER command with the syntax shown in Figure 7-1.

CREATE USER username
 IDENTIFIED BY password;

FIGURE 7-1 Syntax of the CREATE USER command

228

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

For user creation commands to execute successfully, you must use an account with DBA privileges.

N O T E

The CREATE USER command has additional options to perform tasks such as assigning tablespaces
and disk space quotas. This chapter covers only the options associated with enabling login and access
to database objects.

The DBA has been notified that a new data entry clerk, Ron Thomas, has been hired
by JustLee Books and needs an Oracle 12c user account. In most cases, the DBA creates
the account by using a coding scheme for the user’s account name, such as the user’s first
initial followed by his last name. Therefore, for the new employee Ron Thomas, you assign
the account name “rthomas.”

N O T E

Many organizations use a coding scheme for assigning account names to simplify user tracking and
produce unique names.

As shown in Figure 7-1, a password is entered in the IDENTIFIED BY clause when the
account is created. Usually, a temporary password is assigned by using the PASSWORD
EXPIRE option, and the user is allowed to change the password after logging in to the
database. This option allows the user to create a password that’s easier to remember than
a randomly generated password but is still difficult for others to guess. However, the
PASSWORD EXPIRE option isn’t required to create an account. To create the account for
the new employee, use the CREATE USER command shown in Figure 7-2.

FIGURE 7-2 Command to create an account for a new employee

The CREATE USER command in Figure 7-2 creates a new account with the username
RTHOMAS and the password little25car. Note that Oracle 12c account passwords are case
sensitive. After the command is executed, a message indicating that the user was created
is displayed.

Even though an account now exists for Ron Thomas, he can’t log in to the database
yet. If he attempted to log in at this point, the system would prompt him to change his
password but then issue a “login denied” message. A user requires some minimum
privileges to connect to the database and establish a session; however, no privileges have
been granted to this user’s account yet. The next section covers granting privileges.

229

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A S S I G N I N G U S E R P R I V I L E G E S

Privileges allow Oracle 12c users to execute certain SQL statements. Two types of
privileges exist: system privileges and object privileges. System privileges allow access to
the Oracle 12c database and let users perform DDL operations, such as CREATE, ALTER,
and DROP, on database objects (for example, tables and views). Object privileges allow
users to perform DML operations, such as INSERT and UPDATE, on the data contained in
database objects. The following sections describe both types of privileges.

System Privileges
Almost 200 system privileges are available in Oracle 12c. The ability to create, alter, and
drop database objects, such as tables and sequences, is an example of a system privilege.
Other system privileges apply to database access and user accounts. For example, to
connect to Oracle 12c, a user must have the CREATE SESSION privilege. To create new
user accounts, a user must have the CREATE USER privilege.

You can use the optional ANY keyword when granting a system privilege to allow the
user to perform the privilege systemwide. For example, the DROP ANY TABLE command
allows a user to delete or truncate any table in the database—not just tables in the user’s
own schema. You can view all available system privileges in Oracle 12c with the data
dictionary view SYSTEM_PRIVILEGE_MAP. Figure 7-3 shows a portion of the output from
querying this view.

FIGURE 7-3 A partial list of available system privileges

230

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that DML operations, such as INSERT and DELETE, are included in the
system privileges list with the ANY keyword. DML operations are considered object
rather than system privileges unless the ANY keyword is assigned to the privilege. For
example, the INSERT ANY TABLE command gives the user the ability to add rows to
any table, regardless of whether he or she owns the table or has explicit permission to
access that particular table. Because the privilege is effective systemwide (that is, the
privilege can be used on any schema), it’s reclassified from an object privilege to a
system privilege.

N O T E

System privileges affect all objects; therefore, they aren’t assigned by specifying database objects, such
as a table name. Object privileges, on the other hand, are assigned to specific database objects.

Granting System Privileges
System privileges are assigned or granted to users with the GRANT command, which uses
the syntax shown in Figure 7-4.

FIGURE 7-4 Syntax of the GRANT command for system privileges

Take a closer look at elements of the statement in Figure 7-4:

• The system privilege being assigned is identified in the GRANT clause. If
more than one system privilege is being granted, commas separate them. As
mentioned, system privileges aren’t granted for a specific database object;
therefore, no database objects are referenced in this command.

• The users or roles receiving the system privileges are listed in the TO clause.
Roles define a group of users and are discussed later in this chapter.

• WITH ADMIN OPTION allows any user or role identified in the TO clause to
grant the system privilege to any other database users.

Now return to the account creation for the new employee, Ron Thomas. He needs to
be granted the system privilege CREATE SESSION to connect to the Oracle 12c database.
Figure 7-5 shows the command to accomplish this task.

FIGURE 7-5 Command to grant the CREATE SESSION privilege

231

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The only privilege assigned to the new user is the ability to log in to Oracle 12c. Log in
as user RTHOMAS to test the account. Notice that because the account was created with
the PASSWORD EXPIRE option, you’re prompted to change the password. However, after
being logged in to the database, you can’t perform any actions because no other privileges
have been granted. For example, if you attempt to execute a SELECT statement to view
the contents of the BOOKS table, an error message is returned.

N O T E

The password expiration prompt operates correctly with SQL*Plus; however, currently SQL Developer
doesn’t manage this prompt correctly and won’t enable the login. As of version 1.5 of SQL Developer, a
bug has been logged to fix this issue in a future release.

N O T E

The BOOKS table exists in another schema, so the new user, RTHOMAS, must qualify the table name
with the schema name. For example, if the BOOKS table has been created in the SCOTT schema, the
query’s FROM clause must reference the table as SCOTT.BOOKS.

Object Privileges
When a user creates an object, he or she automatically has all object privileges associated
with that object. However, if other users need access to the data contained in a database
object or the ability to manipulate the data, they must be granted the privilege to do so.
Object privileges in Oracle 12c include the following:

• SELECT: Allows users to display data contained in a table, view, or sequence;
also allows generating the next sequence value by using NEXTVAL.

• INSERT: Allows users to insert data in a table or view.
• UPDATE: Allows users to modify data in a table or view.
• DELETE: Allows users to delete data in a table or view.
• INDEX: Allows users to create an index for a table.
• ALTER: Allows altering the definition of a table or sequence.
• REFERENCES: Allows users to reference a table when creating a FOREIGN

KEY constraint. This privilege can be granted only to a user, not to a role.

N O T E

Additional object privileges, such as EXECUTE, are available that allow users to run a stored function or
procedure. See the “Oracle Database SQL Language Reference” in the Oracle documentation library for
a complete list of object privileges.

Granting Object Privileges
Object privileges are also granted to users with the GRANT command, which uses the
syntax shown in Figure 7-6.

232

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 7-6 Syntax of the GRANT command for object privileges

Examine the clauses in Figure 7-6:

• The GRANT clause identifies the object privileges being assigned. INSERT,
UPDATE, and REFERENCES privileges can also be assigned to specific
columns in a table or view. If the object privilege is assigned to a specific
column, the column name should be included in the GRANT clause, inside
parentheses, after the privilege name. Instead of listing object privileges
separately, you can substitute the ALL keyword to indicate granting all object
privileges. Either an object privilege or the ALL keyword must be used after
the GRANT keyword. Be careful when granting users all available object
privileges because this level of access makes it possible for them to perform
any DML operation on the named object.

• The ON clause identifies the object (for example, table, view, sequence) to
which the privilege applies.

• The TO clause identifies the user or role (discussed later in this chapter)
receiving the privilege. You can assign privileges to multiple users or
roles in the same GRANT command by entering the names in a list,
separated by commas. If all database users should be assigned the
privilege, the PUBLIC keyword can be used in the TO clause instead of a
list of names.

• WITH GRANT OPTION enables the user to grant the same object privileges
to other users.

Now take a look at some different examples of granting object privileges to Ron
Thomas, along with their associated commands, as shown in Table 7-2.

TABLE 7-2 Examples of Granting Object Privileges to a User

Example GRANT Command

Ron Thomas needs the ability to select rows from
and insert rows into the CUSTOMERS table,
which is in the SCOTT schema.

GRANT select, insert
ON scott.customers
TO rthomas;

Ron Thomas needs to be able to select any data
from the CUSTOMERS table but be able to modify
only the Lastname and Firstname columns.

GRANT select,
update(lastname, firstname)

ON scott.customers
TO rthomas;

233

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

WITH GRANT OPTION can’t be used when granting object privileges to roles; it applies only to users.

FIGURE 7-7 Command for assigning the SELECT privilege

T I P

Creating a synonym for the BOOKS table, as you learned in Chapter 6, eliminates the need to include
the schema name in this command.

Now assume Ron Thomas just needs to view the BOOKS table’s contents and doesn’t
need to add, delete, or change anything. In this case, the GRANT command should be
issued to assign the necessary object privilege, as shown in Figure 7-7. Remember to
replace the SCOTT schema name with the correct schema name containing the JustLee
Books database.

Because the command shown in Figure 7-7 doesn’t include WITH GRANT OPTION,
the user RTHOMAS isn’t allowed to assign the SELECT privilege for the BOOKS table to
any other user. However, Ron Thomas can now view the BOOKS table’s contents by using
a SELECT command, even though he can’t perform any DML or DDL operations. Execute
the GRANT command from a DBA account. Then log in as RTHOMAS and test the
privilege by executing a SELECT statement on the BOOKS table.

Ron Thomas has now been assigned additional duties that require making corrections
to book titles and published dates. The GRANT command in Figure 7-8 assigns the
UPDATE privilege needed to modify these two columns of the BOOKS table.

Ron Thomas can now execute UPDATE commands affecting the book title and
published date. However, what happens if he tries to modify any other columns of the
BOOKS table? Figure 7-9 shows an attempt to modify the publisher ID as well as the
published date of a specific book. The error message indicates that Ron Thomas doesn’t
have the privileges needed to make this change.

TABLE 7-2 Examples of Granting Object Privileges to a User (continued)

Example GRANT Command

Ron Thomas is assigned full responsibility for the
CUSTOMERS table and, therefore, needs the
ability to perform any activity on the CUSTO-
MERS table and the right to grant these privileges
to other users.

GRANT ALL
ON scott.customers
TO rthomas
WITH GRANT OPTION;

234

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 7-8 Assign the UPDATE privilege on specific columns

FIGURE 7-9 Insufficient privileges error

235

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T I P

You can verify which user account you have logged in as by querying the USER value with the SELECT
USER FROM DUAL; command.

M A N A G I N G P A S S W O R D S

Users often forget their passwords, so DBAs routinely get requests to reset account passwords.
After an account has been created, the simplest way to change the password is with the
ALTER USER command. The DBA can reset the current password and mark the password as
“expired,” which forces the user to set up a new password immediately after attempting to
connect to the database. Figure 7-10 shows the syntax of the ALTER USER command.

FIGURE 7-10 Syntax of the ALTER USER command

The IDENTIFIED BY clause specifies the new password. Figure 7-11 shows the
command for resetting RTHOMAS’s password.

FIGURE 7-11 ALTER USER command for resetting a password

Execute the command in Figure 7-11 from your DBA account. To test the
modification, log in as RTHOMAS with the new password rxy22b. You should be prompted
to change the password, and then the login should be completed successfully.

After logging in to an account successfully, the user can also change the account’s
password by using the ALTER USER command with the IDENTIFIED BY clause. After Ron
logs in to his account and decides that the new password he selected is too difficult to
remember, he could issue the command shown in Figure 7-12.

FIGURE 7-12 Command to change a password

The command shown in Figure 7-12 can be issued by the account owner or anyone
with the ALTER USER system privilege.

236

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C A U T I O N

When changing an account password, Oracle 12c doesn’t require the person issuing the command to
know the account’s current password. Therefore, this privilege should be assigned with caution. Also,
users should be warned that if they log in to Oracle 12c and then leave their workstations while still
connected to the database, anyone could sit down at their computers and change their account
passwords. Because Oracle 12c allows a user multiple logins to the database for the same account at
the same time, someone could be causing damage to the database while the real user is performing
legitimate tasks. The illegal password change would go undetected until the user’s next login attempt.

In addition, some interfaces provide mechanisms for users to change their passwords
after logging in to an account. The mechanism depends on which interface you’re using. For
example, the SQL*Plus client tool offers a PASSWORD command that can be issued at the
SQL prompt. The user is prompted for the old password and then the new password.

From a DBA’s perspective, the previous discussion on logins and passwords just touches
the surface of ways you can control user logins. For example, Oracle 12c supports a variety of
authentication methods beyond the database authentication addressed in this section. Methods
include externally processed authentication, authentication processed globally by Secure
Sockets Layer (SSL), and authentication processed by proxy. Creating user profiles is another
feature for more complex password management, as are password aging rules and verification
complexity (for example, setting requirements on the content and length of passwords).

Authentication also raises the topic of encryption, which refers to scrambling data to make
it unreadable to anyone other than the sender and receiver. Encryption plays a role in protecting
data as it’s transmitted via network communication and storing data in an encrypted form.
Oracle provides encryption for passwords during login transmission and stores users’ passwords
in the data dictionary in an encrypted format. However, you should consider encrypting other
data, too. For example, if customers are providing credit card numbers via the Internet, how can
this information be protected? It calls for securing transmissions with a protocol such as SSL
and, if the credit card numbers are to be stored, encrypting data columns with Oracle encryption
tools. These topics are beyond the scope of this textbook. However, the basic concepts of user
account creation and passwords are fundamental to understanding user access.

U S I N G R O L E S

In most cases, a user needs more privileges than just the CREATE SESSION system
privilege and the SELECT object privilege for one table. For example, as a data entry
clerk, Ron Thomas probably needs to enter the ship date for orders, update information in
the CUSTOMERS table, and so on. In fact, all JustLee Books data entry clerks need to
perform these tasks. Assigning each of the necessary privileges to all data entry clerks
separately could be quite cumbersome. A simpler approach is assigning a group of
privileges to a role, and then assigning the role to relevant users.

A role is a group, or collection, of privileges. In most organizations, roles correlate to
users’ job duties. For example, customer service representatives might need to view all the
data in each database table. However, they probably don’t need the privilege of updating
data in the BOOKS table (ISBN, cost, retail price, and so on). By grouping employees
based on the tasks they need to perform, you can create roles that have been assigned the

237

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

privileges each group needs. So instead of assigning each user several privileges, you can
just assign a collection of privileges—a role—to users.

A role is typically assigned to multiple users representing a workgroup when a new
application is introduced. As new employees join the group, the role can be assigned to
each user as he or she is added. This process not only simplifies assigning and modifying
privileges, but also ensures consistency of privileges for users in a workgroup. In addition,
if you have some employees with job duties covering multiple areas (for example, branch
supervisors), you can assign multiple roles to them, as shown in Figure 7-13.

FIGURE 7-13 Assigning multiple roles to users

Creating and Assigning Roles
Before you can assign privileges to a role, you must create the role object by using the
CREATE ROLE command. Figure 7-14 shows the syntax of this command.

FIGURE 7-14 Syntax of the CREATE ROLE command

After the role has been created, you can grant system and/or object privileges to the
role, using the same syntax as for granting privileges directly to users. The only exception
is that an object privilege can’t be granted to a role with the WITH GRANT OPTION. After

238

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

all privileges have been assigned to a role, the role can then be assigned to all relevant
users with the GRANT command. The syntax for using the GRANT command to grant a
role to a user is shown in Figure 7-15.

FIGURE 7-15 Syntax for granting a role to a user

For example, each order entry clerk should be allowed to issue SELECT, INSERT, and
UPDATE commands for the CUSTOMERS, ORDERS, and ORDERITEMS tables in the
JustLee Books database. Rather than remember exactly which privileges are required
every time a new order entry clerk is hired, a DBA could create a role called
ORDERENTRY to be assigned in lieu of multiple privileges. To create the role, connect as
the DBA user and issue the command shown in Figure 7-16.

FIGURE 7-16 Command for creating the ORDERENTRY role

Now that you’ve created the ORDERENTRY role, you can assign the necessary
privileges to it by using the commands shown in Figure 7-17. Keep in mind that you
should substitute the correct schema for SCOTT—it should be the schema you’re using
that contains the JustLee Books database tables.

FIGURE 7-17 Commands for granting privileges to the ORDERENTRY role

After assigning privileges to the ORDERENTRY role, you can assign the role to any
new order entry clerk by using the GRANT command. Grant the role to Ron Thomas by
issuing the command shown in Figure 7-18. Now he can execute SELECT, UPDATE, and
INSERT commands on any table in the JustLee Books database.

FIGURE 7-18 Command for granting the ORDERENTRY role to RTHOMAS

239

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Users can be assigned several roles, based on the different types of tasks they usually
perform. For example, suppose you create an ORDERENTRY role and a BILLING role to
address both employee groups shown previously in Figure 7-13. Then you create the user-
name SDAVIS for the supervisor named Scott Davis. How can you grant both roles to this
supervisor? The command shown in Figure 7-19 accomplishes this task.

FIGURE 7-19 Command for assigning multiple roles to a user

You can also define a role by including a group of previously defined roles. For
example, JustLee Books might have several supervisors who need the same set of roles
assigned. To simplify this assignment, you could create a role that includes both the
ORDERENTRY and BILLING roles and then assign it to each supervisor who needs both
roles. The commands in Figure 7-20 create a role named SUPERVISOR, which includes
two other roles.

FIGURE 7-20 Command for creating a role that includes two roles

Using Predefined Roles
You don’t necessarily have to create roles from scratch. Oracle has a set of predefined
roles available for assigning user privileges. Table 7-3 lists some of these predefined roles.

TABLE 7-3 Some Predefined Roles in Oracle 12c

Role Name Privileges Included

CONNECT CREATE SESSION

RESOURCE CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE
PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER,
CREATE TYPE

DBA All system privileges as well as WITH ADMIN OPTION

N O T E

The “Oracle Database Security Guide” lists all predefined roles.

240

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can grant these roles to users in the same way you grant roles that you create.
However, predefined roles aren’t usually applicable to assigning privileges to application
users. These roles are more closely associated with privileges that developers and database
administrators require. In addition, Oracle recommends that organizations create their
own roles rather than depend on predefined roles.

Using Default Roles
A user who has been assigned several different roles doesn’t have to have all these roles
activated at login. Users can be assigned a default role that’s enabled automatically
whenever they log in to the database. The default role should consist of only the privileges
the user needs frequently. Privileges that are rarely needed (and could cause problems in
the database if used incorrectly) should be assigned to other roles the user can assume
when needed. For example, a user is assigned a role containing ALTER TABLE privileges,
which aren’t used often. In this case, having this role activated only when needed might be
better to prevent any unintended table modifications.

You use the ALTER USER and SET ROLE commands to control how roles are
activated for a user. After the user account has been created, you can issue an ALTER
USER command with the DEFAULT ROLE option to assign a default role to a user, using
the syntax shown in Figure 7-21.

FIGURE 7-21 Syntax for assigning a default role to a user

As shown in Figure 7-21, users can have none, one, or many roles set as the default
role including a specific role name enables only that role when the user logs in. The ALL
option enables all roles assigned to the user. If the EXCEPT option is used, all roles except
those listed in this clause are enabled. The NONE option disables all assigned roles,
requiring the user to enable a role after logging in. Table 7-4 lists examples of using default
roles for different situations.

TABLE 7-4 Examples of Setting Default Roles

Example GRANT Command

Ron Thomas needs only the ORDERENTRY role enabled at login. ALTER USER rthomas
DEFAULT ROLE orderentry;

Scott Davis, the supervisor, has been assigned three roles:
ORDERENTRY, BILLING, and MOD_TABLES. All these privileges
are needed routinely, so all roles should be enabled at login.

ALTER USER sdavis
DEFAULT ROLE ALL;

Scott Davis, the supervisor, has been assigned three roles:
ORDERENTRY, BILLING, and MOD_TABLES. The privileges for
the MOD_TABLES role are needed only periodically, so all roles
except this one should be enabled at login.

ALTER USER sdavis
DEFAULT ROLE
ALL EXCEPT mod tables;

241

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Enabling Roles After Login
After connecting to the database, a user might need to assume or enable a role or set of
privileges other than those assigned as the default role. The user can issue a SET ROLE
command to do this, using the syntax shown in Figure 7-22.

FIGURE 7-22 Syntax of the SET ROLE command

Note that users can’t set their roles to a role that hasn’t already been assigned to
them. For example, they can’t issue the command SET ROLE DBA unless they have
already been assigned that role by an administrator.

As a safety precaution, some database administrators add a password to a role. For
example, the employee Scott has been assigned special privileges through the DBA role.
However, he uses this role only when he needs to perform certain operations. One day,
he’s logged in to the Oracle 12c database, performing day-to-day activities that require
only his normal privileges. He’s summoned away unexpectedly for a meeting and doesn’t
remember to log out of the server. Because no special privileges are currently available,
forgetting to log out might not be a problem. However, if a disgruntled employee knows
Scott has access to the DBA role, that employee can simply sit down at Scott’s computer
and set the role to DBA with the SET ROLE command. With these privileges available, the
disgruntled employee could do a lot of damage in a short time.

To avoid this problem, administrators add passwords to roles that have important and
potentially risky privileges. To add a password to a role, simply use the ALTER ROLE
command with the syntax shown in Figure 7-23.

FIGURE 7-23 Syntax of the ALTER ROLE command

After the ALTER ROLE command has been used to add a password to a role, any user
attempting to use the role is required to enter the password, or the role isn’t enabled.

N O T E

A password isn’t required for roles assigned as a user’s default role. It’s required only when the SET
ROLE command is issued to enable a role.

V I E W I N G P R I V I L E G E I N F O R M A T I O N

You can query various data dictionary views to determine the privileges currently assigned to
a user or role. Table 7-5 describes some commonly used data dictionary views. A Y in the DBA
column indicates that DBA privileges are required to see that data dictionary view.

242

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 7-5 Views for Displaying Privilege Information

DBA Data Dictionary View Information

Y DBA_ROLES All roles defined in the database

Y ROLE_TAB_PRIVS Table privileges assigned to roles

Y ROLE_SYS_PRIVS System privileges assigned to roles

Y DBA_ROLE_PRIVS Roles assigned to users

Y DBA_TAB_PRIVS All table privileges assigned

N USER_SYS_PRIVS System privileges granted to the current user

N USER_TAB_PRIVS Object privileges granted to the current user

N USER_ROLE_PRIVS Roles assigned to the current user

N ROLE_TAB_PRIVS Table privileges assigned to the current user via roles

N SESSION_ROLES Roles currently enabled for the current user

N SESSION_PRIVS Privileges active for the current user that haven’t been
assigned via a role

The DBA at JustLee Books might need to confirm which table privileges are assigned
to the ORDERENTRY role. The statement in Figure 7-24 accomplishes this task.

FIGURE 7-24 Verifying privileges assigned to a role

243

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After being logged in, the user RTHOMAS might want to check which system
privileges and roles are currently enabled. Figure 7-25 shows the statements for
performing this task.

FIGURE 7-25 Verifying active system privileges and roles

R E M O V I N G P R I V I L E G E S A N D U S E R S

Privileges and roles can be removed or dropped as easily as they can be assigned. The
REVOKE command is used to remove privileges and roles assigned to a user. The DROP
command is used to eliminate roles or users from the database system. The following
sections describe these commands.

Revoking Privileges and Roles
Privileges granted to a user or role can be removed by using the REVOKE command.
Figure 7-26 shows the syntax of the REVOKE command used to remove a system privilege
from a user or role.

FIGURE 7-26 Syntax for revoking a system privilege

The REVOKE command can also be used to revoke object privileges, using the syntax
shown in Figure 7-27.

244

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 7-27 Syntax for revoking an object privilege

In addition, the REVOKE command can be used to remove a role from an account,
using the syntax shown in Figure 7-28.

FIGURE 7-28 Syntax for removing a role from an account

For example, to remove the DELETE privilege on the CUSTOMERS table from the
ORDERENTRY role, the DBA could issue the command shown in Figure 7-29.

FIGURE 7-29 Command for removing an object privilege from a role

To remove the ORDERENTRY role from Ron Thomas’s user account, the DBA can
issue the command shown in Figure 7-30.

FIGURE 7-30 Command for removing the ORDERENTRY role from a user account

N O T E

Now that the ORDERENTRY role isn’t available to Ron Thomas, he no longer has access to the
CUSTOMERS, ORDERS, and ORDERITEMS tables.

C A U T I O N

When revoking an object privilege that was originally granted by using WITH GRANT OPTION, the
privilege is revoked not only from the specified user, but also from any other users to whom the user
might have subsequently granted the privilege. On the other hand, revoking a system privilege that was
originally granted by using WITH ADMIN OPTION has no cascading effect on other users.

245

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dropping a Role
A role can be deleted from the Oracle 12c database with the DROP ROLE command,
which uses the syntax shown in Figure 7-31.

FIGURE 7-31 Syntax of the DROP ROLE command

When a role is removed from the database, users lose all privileges derived from that
role. The only way they can use the privileges previously assigned by the role is to be
assigned these privileges again, either by direct grants of the privileges or by creating
another role.

For example, you decide the ORDERENTRY role should be more restrictive and
specify exactly which columns can be updated in certain tables. The simplest solution is to
drop the existing role and re-create it with a new ORDERENTRY role. To drop the role,
use the command shown in Figure 7-32.

FIGURE 7-32 Command for dropping the ORDERENTRY role

Dropping a User
At times, accounts need to be removed from the system for various reasons, the
most common being employees leaving because of events such as retirement. As an
example of another reason, suppose Ron’s supervisor has just informed you that the
correct spelling of Ron’s last name is Tomas, not Thomas. There’s no ALTER USER
option available for changing an account’s username. Instead, you must delete Ron’s
existing account and re-create it with the correct spelling. To remove a user account
from an Oracle 12c database, use the DROP USER command with the syntax shown
in Figure 7-33.

FIGURE 7-33 Syntax of the DROP USER command

The command DROP USER rthomas; drops the existing account named “rthomas.”
You then need to create a new account with the correct “rtomas” spelling. If the user has
any objects in his or her schema, you must use the CASCADE option in the DROP USER
command. This option is listed after the username and eliminates all objects in the
schema so that the user can be deleted.

246

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• Database account management is only one facet of data security.
• A new user account is created with the CREATE USER command. The

IDENTIFIED BY clause contains the password for the account.
• System privileges are used to grant access to the database and to create, alter,

and drop database objects.
• The CREATE SESSION system privilege is required before users can access their

accounts on the Oracle server.
• The system privileges available in Oracle 12c can be viewed with the

SYSTEM_PRIVILEGE_MAP data dictionary view.
• Object privileges allow users to manipulate data in specific database objects.
• Privileges are assigned with the GRANT command.
• The ALTER USER command, combined with the PASSWORD EXPIRE clause,

can be used to force users to change their passwords at the next attempted login.
• The ALTER USER command, combined with the IDENTIFIED BY clause, can be

used to change a user’s password.
• Privileges can be assigned to roles to make administration of privileges easier.
• Roles are collections of privileges.
• The ALTER USER command, combined with the DEFAULT ROLE keywords, can

be used to assign a default role to a user.
• A role can be enabled in a session with the SET ROLE command.
• Privileges can be removed from users and roles by using the REVOKE command.
• Roles can be removed from users by using the REVOKE command.
• A role can be deleted with the DROP ROLE command.
• A user account can be deleted with the DROP USER command.

Chapter 7 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Command
Description Command Syntax Example

Creating, Maintaining, and Dropping User Accounts

Create a user CREATE USER username
IDENTIFIED BY password;

CREATE USER rthomas
IDENTIFIED BY
little25car;

Change or expire
a password

ALTER USER username
[IDENTIFIED BY

newpassword]
[PASSWORD EXPIRE];

ALTER USER rthomas
IDENTIFIED BY
monster42truck;

247

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Command
Description Command Syntax Example

Creating, Maintaining, and Dropping User Accounts

Drop a user DROP USER username; DROP USER rthomas;

Granting and Revoking Privileges

Grant object
privileges to
users or roles

GRANT{objectprivilege | ALL}
[(columnname),
objectprivilege
(columnname)]

ON objectname
TO {username|rolename|PUBLIC}
[WITH GRANT OPTION];

GRANT select, insert
ON customers
TO rthomas
WITH GRANT OPTION;

Grant system
privileges to
users or roles

GRANT systemprivilege
[, systemprivilege, . . .]
TO username| rolename
[, username|rolename, . ..]

[WITH ADMIN OPTION];

GRANT CREATE SESSION
TO rthomas;

Revoke object
privileges

REVOKE objectprivilege
[, . . . objectprivilege]

ON objectname
FROM username|rolename;

REVOKE INSERT
ON customers
FROM rthomas;

Revoke system
privileges

REVOKE systemprivilege
[, . . . systemprivilege]

FROM username | rolename;

REVOKE CREATE SESSION
FROM rthomas;

Granting and Revoking Roles

Create a role CREATE ROLE rolename; CREATE ROLE orderentry;

Grant a role
to a user

GRANT rolename[, rolename]
TO username[, username];

GRANT orderentry
TO rthomas;

Assign a default
role to a user

ALTER USER username
DEFAULT ROLE rolename;

ALTER USER rthomas
DEFAULT ROLE orderentry;

Set or enable a role SET ROLE rolename; SET ROLE DBA;

Add a password
to a role

ALTER ROLE rolename
IDENTIFIED BY password;

ALTER ROLE orderentry
IDENTIFIED BY apassword;

Revoke a role REVOKE rolename
FROM username | rolename;

REVOKE orderentry
FROM rthomas;

Drop a role DROP ROLE rolename; DROP ROLE orderentry;

248

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. What is the purpose of data security?

2. What does a database account with the CREATE SESSION privilege allow the user to do?

3. How is a user password assigned in Oracle 12c?

4. What is a privilege?

5. If you’re logged in to Oracle 12c, how can you determine which privileges are currently
available to your account?

6. What types of privileges are available in Oracle 12c? Define each type.

7. What is the purpose of a role in Oracle 12c?

8. How can you assign a password to a role?

9. What happens if you revoke an object privilege that was granted with the WITH GRANT
OPTION? What if the privilege is removed from a user who had granted the same object
privilege to three other users?

10. How can you remove a user account from Oracle 12c?

Multiple Choice

To answer the following questions, refer to the JustLee Books database.

1. Which of the following commands can be used to change a password for a user account?

a. ALTER PASSWORD

b. CHANGE PASSWORD

c. MODIFY USER PASSWORD

d. ALTER USER … PASSWORD

e. none of the above

2. Which of the following statements assigns the role CUSTOMERREP as the default role for
Maurice Cain?

a. ALTER ROLE mcain

DEFAULT ROLE customerrep;

b. ALTER USER mcain

TO customerrep;

c. SET DEFAULT ROLE customerrep

FOR mcain;

d. ALTER USER mcain

DEFAULT ROLE customerrep;

e. SET ROLE customerrep

FOR mcain;

249

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Which of the following statements is most accurate?

a. Authentication procedures prevent any data stored in the Oracle 12c database from
being stolen or damaged.

b. Authentication procedures are used to limit unauthorized access to the Oracle 12c
database.

c. Oracle 12c authentication doesn’t prevent users from accessing data in the database if
they have a valid operating system account.

d. Authentication procedures restrict the type of data manipulation operations that a user
can perform.

4. Which of the following statements creates a user account named DeptHead?

a. CREATE ROLE depthead

IDENTIFIED BY apassword;

b. CREATE USER depthead

IDENTIFIED BY apassword;

c. CREATE ACCOUNT depthead;

d. GRANT ACCOUNT depthead;

5. Which of the following privileges must be granted to a user’s account before the user can
connect to the Oracle 12c database?

a. CONNECT

b. CREATE SESSION

c. CONNECT ANY DATABASE

d. CREATE ANY TABLE

6. Which of the following privileges allows a user to truncate tables in a database?

a. DROP ANY TABLE

b. TRUNCATE ANY TABLE

c. CREATE TABLE

d. TRUNC TABLE

7. Which of the following tables or views displays the current enabled privileges for a user?

a. SESSION_PRIVS

b. SYSTEM_PRIVILEGE_MAP

c. USER_ASSIGNED_PRIVS

d. V$ENABLED_PRIVILEGES

8. Which of the following commands eliminates only the user ELOPEZ’s ability to enter new
books in the BOOKS table?

a. REVOKE insert

ON books

FROM elopez;

250

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. REVOKE insert

FROM elopez;

c. REVOKE INSERT INTO

FROM elopez;

d. DROP insert

INTO books

FROM elopez;

9. Which of the following commands is used to assign a privilege to a role?

a. CREATE ROLE

b. CREATE PRIVILEGE

c. GRANT

d. ALTER PRIVILEGE

10. Which of the following options requires a user to change his or her password at the next
login?

a. CREATE USER

b. ALTER USER

c. IDENTIFIED BY

d. PASSWORD EXPIRE

11. Which of the following options allows a user to grant system privileges to other users?

a. WITH ADMIN OPTION

b. WITH GRANT OPTION

c. DBA

d. ASSIGN ROLES

e. SET ROLE

12. Which of the following is an object privilege?

a. CREATE SESSION

b. DROP USER

c. INSERT ANY TABLE

d. UPDATE

13. Which of the following privileges can be granted only to a user, not to a role?

a. SELECT

b. CREATE ANY

c. REFERENCES

d. READ

e. WRITE

251

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. Which of the following is used to grant all object privileges for an object to a specified user?

a. ALL

b. PUBLIC

c. ANY

d. OBJECT

15. Which of the following identifies a collection of privileges?

a. an object privilege

b. a system privilege

c. DEFAULT privilege

d. a role

16. Which of the following is true?

a. If the DBA changes the password for a user while the user is connected to the
database, the connection terminates automatically.

b. If the DBA revokes the CREATE SESSION privilege from a user account, the user
can’t connect to the database.

c. If a user is granted the privilege to create a table and the privilege is revoked after the
user creates a table, the table is dropped from the system automatically.

d. all of the above

17. Which of the following commands can be used to eliminate the RECEPTIONIST role?

a. DELETE ROLE receptionist;

b. DROP receptionist;

c. DROP ANY ROLE;

d. none of the above

18. Which of the following displays a list of all system privileges available in Oracle 12c?

a. SESSION_PRIVS

b. SYS_PRIVILEGE_MAP

c. V$SYSTEM_PRIVILEGES

d. SYSTEM_PRIVILEGE_MAP

19. Which of the following can be used to change the role that’s currently enabled for a user?

a. SET DEFAULT ROLE

b. ALTER ROLE

c. ALTER SESSION

d. SET ROLE

20. Which of the following is an object privilege?

a. DELETE ANY

b. INSERT ANY

c. UPDATE ANY

d. REFERENCES

252

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hands-On Assignments

Create and execute SQL statements to perform the following actions, using the JustLee Books
database:

1. Create a new user account. The account name should be a combination of your first initial
and your last name.

2. Attempt to log in to Oracle 12c with the newly created account.

3. Assign privileges to the new account that allow connecting to the database, creating new
tables, and altering an existing table.

4. Using an account with the required privileges, create a role named CUSTOMERREP that
allows inserting new rows in the ORDERS and ORDERITEMS tables and deleting rows
from these tables.

5. Assign the account created in Assignment 1 the CUSTOMERREP role.

6. Log in to Oracle 12c with the new account created in Assignment 1. Determine the
privileges currently available to the account.

7. Revoke the privilege to delete rows in the ORDERS and ORDERITEMS tables from the
CUSTOMERREP role.

8. Remove the CUSTOMERREP role from the account created in Assignment 1.

9. Delete the CUSTOMERREP role from the Oracle 12c database.

10. Delete the user account created in Assignment 1.

Advanced Challenge

Use the JustLee Books database to perform the following activity:
There are three major classifications for employees who don’t work for the Information

Systems Department of JustLee Books: account managers, who are responsible for the
company’s marketing activities (for example, promotions based on customers’ previous
purchases or for specific books); data entry clerks, who enter inventory updates (for example,
add new books and publishers, change prices, and so on); and customer service
representatives, who are responsible for adding new customers and entering orders in the
database. Each employee group has different tasks to perform and, therefore, needs different
privileges for various tables in the database. To simplify administration of system and object
privileges, a role should be created for each employee group.

Create a document for your supervisor that contains the following information:

• List the tables that each group of employees needs to access from these tables:
BOOKS, CUSTOMERS, ORDERS, ORDERITEMS, AUTHOR, BOOKAUTHOR,
PUBLISHER, and PROMOTION.

• Name the privileges each group of employees needs.
• For each group of employees, name a role containing the necessary privileges for

that group.
• For all groups of employees, list the exact commands for creating and assigning

specific privileges to their roles.
• Explain your rationale for the privileges granted to each role.

253

User Creation and Management

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Study: City Jail

The City Jail organization is preparing to deploy the new database to four departments. The
departments and associated duties for the database are described in the following chart:

Department
Number of
Employees Duties

Criminal Records 8 1. Add new criminals and crime charges.

2. Make changes to criminal and crime charge data as
needed for corrections or updates.

3. Keep the police officer information up to date.

4. Maintain the crime codes list.

Court Recording 7 1. Enter and modify all court appeals information.

2. Enter and maintain all probation information.

3. Maintain the probation officer list.

Crimes Analysis 4 1. Analyze all criminal and court data to identify trends.

2. Query all crimes data as needed to prepare federal
and state reports.

Data officer 1 1. Remove crimes, court, and probation data based on
approved requests from any of the other departments.

Based on the department duties outlined in the table, develop a plan to assign privileges to
employees in all four departments. The plan should include the following:

• A description of what types of objects are required
• A list of commands needed to address user creation for each department

254

Chapter 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R8
RESTRICTING ROWS AND
SORTING DATA

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Use a WHERE clause to restrict the rows a query returns

• Create a search condition by using mathematical comparison operators

• Use the BETWEEN ... AND comparison operator to specify records
within a range of values

• Specify a list of values for a search condition by using the IN comparison
operator

• Search for patterns with the LIKE comparison operator

• Identify the purpose of the % and _ wildcard characters

• Join multiple search conditions by using the correct logical operator

• Perform searches for NULL values

• Specify the order for displaying query results by using an ORDER BY
clause

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

Chapters 3 through 7 covered the creation of database objects, including tables,
constraints, indexes, sequences, and users. This chapter shifts the focus back to
querying a database. In Chapter 2, you learned how to retrieve specific fields from a
table. However, unless you use the DISTINCT or UNIQUE keyword, your results include
every record. Sometimes you want to see only records meeting certain conditions—a
process referred to as selection. Because selection reduces the number of records a
query returns, locating a specific record in the output is usually easier. In addition, if
data is displayed in a sorted order, identifying trends can be easier. This chapter
explains how to perform queries with search conditions and sorting methods. In
particular, you see how to use the WHERE clause of the SELECT statement as a search
condition and the ORDER BY clause to display results in a specific sequence. You have
already seen the WHERE clause used in UPDATE and DELETE DML statements to limit
the number of rows affected by the modification. Table 8-1 gives you an overview of this
chapter’s topics.

TABLE 8-1 Keywords and Operators Used to Restrict and Sort Rows

Element Description

WHERE clause Used to specify conditions that must be true for a record to
be included in query results

ORDER BY clause Used to specify the sorted order for displaying query
results

Mathematical comparison operators
(¼,<, >, <¼, >¼, <>, !¼, ^¼)

Used to indicate how a record should relate to a specific
search value

Other comparison operators
(BETWEEN ... AND, IN, LIKE, IS NULL)

Used in conditions with search values that include
patterns, ranges, or NULL values

Logical operators (AND, OR, NOT) Used to join multiple search conditions (AND, OR) or
reverse the meaning of a search condition (NOT)

D A T A B A S E P R E P A R A T I O N

Before working through this chapter’s examples, run the JLDB_Build_8.sql script in the Chapter 8 folder
of your data files to ensure that all necessary tables and constraints are available. This script removes
your existing tables and creates a new set of tables. Refer to the steps at the beginning of Chapter 2 for
loading and running a script. Ignore any errors in the DROP TABLE statements at the beginning of the
script. An “object does not exist” error indicates merely that the table wasn’t created in the schema
previously.

256

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

W H E R E C L A U S E S Y N T A X

To retrieve records in an Oracle 12c database based on a given condition, add the
WHERE clause to the SELECT statement. As indicated by square brackets ([]) in the
syntax shown in Figure 8-1, the WHERE clause is optional. When used, it should be listed
after the FROM clause.

FIGURE 8-1 Syntax of the SELECT statement

N O T E

Figure 8-1 shows the full structure of a query, as addressed in this textbook. You learn about the
GROUP BY and HAVING clauses in Chapter 11, and the ORDER BY clause is explained in “ORDER
BY Clause Syntax” later in this chapter.

A condition identifies what must exist or a requirement that must be met for a record to
be included in the results. Oracle 12c searches through each record to determine whether the
condition is TRUE. If a record meets the condition, it’s returned in the query results. For a
simple search of a table, the condition portion of the WHERE clause follows this format:

<column name> <comparison operator> <another named column or a value>

For example, to display a list containing the last name of every customer living in
Florida, you use the SQL statement shown in Figure 8-2.

FIGURE 8-2 Query to perform a simple search based on a given condition

As shown in Figure 8-2, the query specifies the Lastname and State columns stored in
the CUSTOMERS table as the data to list in the output. Recall from Chapter 1 that
limiting the output to specific columns is referred to as projection. However, you want to
see only the records of customers who have the letters FL stored in the State field.
Therefore, in the WHERE clause, WHERE is the keyword, State is the name of the column
to be searched, the comparison operator “equal to” (¼) means the record must contain
the exact value specified, and the specified value is FL.

Notice the single quotation marks around FL, which designate it as a string literal.
Also, note that the value FL is in uppercase letters to match the format in which data is

257

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

entered in the State field. The process of limiting output to specific rows is called
selection, as mentioned in the beginning of this chapter. Figure 8-3 shows the output of
this SELECT statement.

FIGURE 8-3 Results of a state-based search

N O T E

If you get an error message, verify that the FL value is enclosed in single, not double, quotation marks.
(Double quotation marks, used in Chapter 2, are for column aliases.) If no rows are returned, make sure
the letters FL are capitalized. The data for JustLee Books was originally entered in uppercase
characters and is, therefore, stored in the database tables in that format. Any value entered in a string
literal (that is, inside single quotation marks) is evaluated exactly as entered—both in spacing and letter
case. Therefore, if a string literal is entered for a search condition, it must be in the same case as the
data being searched, or no rows are returned in the results. You can verify the case of data stored in a
table by querying the table and reviewing the output. Although Oracle 12c isn’t case sensitive when
evaluating keywords, table names, and column names, evaluation of data contained in a record is case
sensitive.

The query results in Figure 8-3 list the last name and state for each customer living in
Florida. As you can see, only four rows are returned, even though the table contains 20
customers. The WHERE clause restricts the number of records returned in the results to
only those meeting the condition state ¼ 'FL'.

Rules for Character Strings
When you use a string literal, such as FL, as part of a search condition, the value must be
enclosed in single quotation marks and, as a result, is interpreted exactly as listed. By
contrast, if the field referenced in a condition consists only of numbers, single quotation
marks aren’t required. For example, suppose you want to see all data stored in the
CUSTOMERS table for customer 1010. The Customer# field has a numeric datatype.

258

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Issue the SQL statement to accomplish this task, and compare it to the output shown in
Figure 8-4.

FIGURE 8-4 Search results for Customer 1010

In this example, the value 1010 for the Customer# column isn’t enclosed in single
quotation marks because this column has been defined to store only numbers. Therefore,
single quotation marks aren’t necessary.

Next, use a WHERE statement to search for a book with the ISBN 1915762492. Figure 8-5
shows the input and the output of this query.

FIGURE 8-5 Search results for ISBN 1915762492

The ISBN column of the BOOKS table is defined as a character (text) field instead of a
numeric field because some ISBNs contain letters. In this instance, however, no values
stored in the ISBN column contain letters. Therefore, you can search the field by using a
numeric value without any single quotation marks. However, if the table has even one
record containing a letter in the ISBN field, Oracle 12c returns an error message. In other
words, omitting the single quotation marks works in this case, but it might not always
work. Using single quotation marks ultimately depends on whether the field is defined to
hold text or numeric data. Therefore, always use single quotation marks if the column is
defined with anything other than a numeric data type.

259

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T I P

If you don’t know whether a column is defined to hold only numeric values, issue the DESCRIBE
tablename command to see how table columns have been defined.

Rules for Dates
Sometimes you need to use a date as a search condition. Oracle 12c displays dates in the
default format DD-MON-YY, with MON being the standard three-letter abbreviation for the
month. Because the Pubdate field contains letters and hyphens, it’s not considered a
numeric value when Oracle 12c performs searches. Therefore, a date value must be
enclosed in single quotation marks. Figure 8-6 shows a query for books published on
January 21, 2005.

FIGURE 8-6 Querying with a date condition

N O T E

You learn a variety of techniques to specify date conditions throughout this chapter and Chapter 10,
which introduces functions. These techniques give you more flexibility in designating date conditions,
such as searching for all records with a date in a specified year.

C O M P A R I S O N O P E R A T O R S

So far in this chapter, you have used an equal sign, or equality operator, to evaluate
search conditions; basically, you instruct Oracle 12c to return only results containing the
exact value you provide. However, many searches aren’t based on an “equal to” condition.
For example, management needs a list of books for a proposed marketing campaign. The
Marketing Department wants to include a gift with the purchase of any book that has a
retail price of more than $55.00. Management wants to know which books can be
mentioned in an advertisement of this marketing campaign. The equality operator isn’t

260

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

suitable in this situation, so you need a different comparison operator. A comparison
operator indicates how data should relate to the search value, such as “greater than” or
“less than.” In this case, you need a comparison operator meaning “greater than” (>) to
determine which books meet the “more than $55.00” requirement. Execute the statement
in Figure 8-7 to perform this task.

FIGURE 8-7 Searching for books with a retail price greater than $55

Based on these results, you know that four books meet the condition for this sales
promotion. Notice that 55 is entered as the value for the Retail condition. This value
could have also been entered as 55.00. Oracle 12c accepts a period to indicate decimal
positions without considering the entry to be a character value rather than a numeric
value. However, if you enter the dollar sign ($) or a comma (to indicate a thousands
position), you get an error message indicating that the Retail field is numeric and the
value entered is an “invalid character.” (The dollar sign is treated as a formatting
character, so $55.00 is not equivalent to 55.00.) Unlike some other database management
systems, Oracle 12c doesn’t have a currency datatype, so it regards the comma and dollar
sign as characters.

The “greater than” (>) comparison operator can also be used with text and date
fields. Suppose you’re about to take a physical inventory of all books in stock. The
procedure JustLee Books uses is to give each employee a list of books, and then have the
person record the quantity on hand; each person is responsible for a portion of the
alphabet. For example, one person might be responsible for all books with titles falling in
the A through D range.

Figure 8-8 shows how to create the list of books for the person assigned to inventory
all books with a title occurring alphabetically after the letters HO. All book titles with
additional characters following HO or beginning with the letters HP and the letters that
follow are listed.

261

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-8 Searching for book titles with letters greater than HO

Now that you’ve examined “equal to” and “greater than” comparison operators, take a
look at Table 8-2, which lists comparison operators commonly used in Oracle 12c. Even
though the first group lists comparison operators considered to be mathematical
operators, they can be used with a variety of datatypes, including characters and dates.

In contrast to the “greater than” (>) operator that returns only rows with a value
higher than the value in the condition, the “less than” (<) operator returns only values
that are less than the condition. For example, the management of JustLee Books wants a
list of all books having a profit of less than 20% of the book’s cost. Because profit is

TABLE 8-2 Comparison Operators

Mathematical Comparison Operators

¼ Equality or “equal to”—for example, cost ¼ 55.95

> Greater than—for example, cost > 20

< Less than—for example, cost < 20

<>, !¼, or ^¼ Not equal to—for example, cost <> 55.95 or cost !¼55.95 or
cost ^¼ 55.95

<¼ Less than or equal to—for example, cost <¼ 20

>¼ Greater than or equal to—for example, cost >¼ 20

262

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

determined by subtracting the cost from the retail price, this calculated value can be
compared against the book’s cost multiplied by .20 (the decimal version of 20%). As
shown in Figure 8-9, only one book generates less than a 20% profit margin.

FIGURE 8-9 Searching Profit with the “less than” operator

T I P

You might be tempted to use the column alias Profit in the WHERE clause in Figure 8-9 instead of
repeating the calculation retail-cost. Using a column alias isn’t allowed in the WHERE clause,
however, and raises an error. The only clause that allows using column aliases is the sorting clause of
ORDER BY, explained in “ORDER BY Clause Syntax” later in this chapter.

TABLE 8-2 Comparison Operators (continued)

Other Comparison Operators

[NOT] BETWEEN
x AND y

Used to express a range—for example, searching for numbers BETWEEN 5
AND 10. The optional NOT is used when searching for numbers that are NOT
BETWEEN 5 AND 10.

[NOT] IN (x,y,...) Similar to the OR logical operator. Can search for records meeting at least one
condition inside the parentheses—for example, Pubid IN (1, 4, 5) returns
only books with a publisher ID of 1, 4, or 5. The optional NOT keyword
instructs Oracle to return books not published by Publisher 1, 4, or 5.

[NOT] LIKE Used when searching for patterns if you aren’t certain how something is spelled—
for example, title LIKE 'TH%'. Using the optional NOT means records that do
contain the specified pattern shouldn’t be included in the results.

IS [NOT] NULL Used to search for records that don’t have an entry in the specified field—for
example, Shipdate IS NULL. Include the optional NOT to find records that
do have an entry in the field—for example, Shipdate IS NOT NULL.

263

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The “greater than” and “less than” operators don’t include values that exactly match
the condition. For example, if you want the results in Figure 8-9 to include books
returning exactly 20% profit, the comparison operator must be changed to the “less
than or equal to” operator (<¼). If you substitute the >¼ operator for the < operator in
Figure 8-9, any book returning exactly 20% profit is also included in the results.

As another example, the Marketing Department is sorting paper files and requests a
list of all customers who live in Georgia or in a state listed alphabetically before Georgia
(that is, A through GA). The simplest way to identify these customers is to search for all
customers by using the condition state <¼ 'GA', as shown in Figure 8-10.

FIGURE 8-10 Searching State with the “less than or equal to” operator

Later, the Marketing Department asks you to identify all customers who live in
Georgia or in a state with a state abbreviation “greater than” GA. Although you might
think this request is a little unusual because the previous list already includes
customers living in Georgia, you nevertheless create the list by using the condition
state >¼ 'GA' and retrieve the names of 13 customers meeting this condition, as
shown in Figure 8-11.

264

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-11 Searching State with the “greater than or equal to” operator

For another marketing analysis, the Marketing Department requests a list of all
customers who do not live in the state of Georgia. You can generate this list by using the
condition state <> 'GA', as shown in Figure 8-12.

T I P

Using !¼ or ^¼ for the “not equal to” operator in Figure 8-12 returns the same results as using <>.

265

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-12 Searching State with the “not equal to” operator

FIGURE 8-13 Searching a date value

266

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To see how comparison operators are used with dates, suppose you need to produce a
list of all orders placed before April 2009. You could use the WHERE clause with a
condition on the Orderdate column, as shown in Figure 8-13. The “less than” comparison
translates to “dates before” in this query, as the database system recognizes you’re
working with a date column.

BETWEEN ... AND Operator
The BETWEEN ... AND comparison operator is used when searching a field for values
falling within a specified range. Figure 8-14 shows a query to find any book with a
publisher that has an assigned ID between 1 and 3. Notice that the range is inclusive, so it
includes any publisher with the ID 1, 2, or 3.

FIGURE 8-14 Searching Pubid with the BETWEEN ... AND operator

Returning to the book inventory example, an alphabetical range of titles could be
queried with the BETWEEN ... AND comparison operator. The statement shown in
Figure 8-15 identifies all book titles falling in the A through D range.

267

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-15 Searching for a character range with the BETWEEN ... AND operator

You could also search for a range of dates with the BETWEEN ... AND comparison
operator. For example, if JustLee management needs to identify all orders placed from
April 1, 2009 to April 4, 2009, a query using WHERE orderdate BETWEEN '01-APR-09'
AND '04-APR-O9' accomplishes this task.

IN Operator
The IN operator returns records matching one of the values listed in the condition.
Oracle 12c syntax requires separating list items with commas, and the entire list must be
enclosed in parentheses. For example, the output of the query in Figure 8-16 shows that
seven books currently in inventory are published by Publisher 1, 2, or 5.

FIGURE 8-16 Searching Pubid with the IN operator

268

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If a list of all customers residing in California or Texas is needed, you should include
the state abbreviations in single quotation marks because they are string literals. The
query in Figure 8-17 shows using the IN operator to produce this list.

FIGURE 8-17 Searching State with the IN operator

Keep in mind that the NOT option can be used with all comparison operators to
reverse the operation. For example, if you want to list all customers in states other
than California or Texas, you can add the NOT option to the same query, as shown in
Figure 8-18. The list now includes all customers in any states except California and
Texas.

269

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-18 Using the NOT option

LIKE Operator
The LIKE operator is unique, in that it’s used with wildcard characters to search for
patterns. Wildcard characters are used to represent one or more alphanumeric
characters. The wildcard characters available for pattern searches in Oracle 12c are the
percent sign (%) and the underscore symbol (_). The percent sign represents any number
of characters (zero, one, or more), and the underscore symbol represents exactly one
character. For example, if you’re trying to find any customer whose last name starts with
P and don’t care about the remaining letters of the last name, you can enter the SQL
statement shown in Figure 8-19.

270

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-19 Searching with the LIKE operator and the % wildcard character

T I P

The % and _ symbols are treated as wildcard characters only with the LIKE operator. If you mistakenly
write the search clause in Figure 8-19 as WHERE lastname ¼ 'P%', using the ¼ operator instead of the
LIKE operator, the % symbol is treated as a string literal. Therefore, the query searches for the last
name P%, which yields no results.

The results include two customers whose last names begin with P. If, however, you’re
searching for customers whose last names contain a P in any position, you change the
search pattern to '%P%'. Oracle interprets this pattern as “It doesn’t matter what’s before
or after the letter P, but a P must be somewhere in the Lastname column.”

Suppose you’re having difficulty reading the printout of a customer’s order because
someone spilled coffee on the form. You can tell that the first two digits of the customer# are 1
and 0, and the last digit is 9. However, you can’t read the third number. In this case, you could
use the _ wildcard character to represent the missing digit, as shown in Figure 8-20.

FIGURE 8-20 Searching with the LIKE operator and the _ wildcard character

271

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Oracle 12c interprets the search condition in Figure 8-20 as “Look for any customer
number that begins with 10, is followed by any character, and ends with 9.” The results
return two customers: 1009 and 1019.

The percent sign and underscore symbol can also be combined in the same search
condition to create more complex search patterns. Suppose you need to identify every
book ISBN that has 4 as the second numeral and ends with 0. The pattern you’re trying to
identify can be stated as '_4%0' because you know just one number comes before the 4
and there will be additional numbers after the 4. You don’t care what the numbers are or
how many there are, as long as the last digit is 0. As shown in Figure 8-21, this search
pattern identifies two books from the BOOKS table.

FIGURE 8-21 Searching with the LIKE operator and a combination of wildcard characters

N O T E

The regular expression REGEXP_LIKE extends the pattern-matching capabilities of the LIKE operator.
Regular expressions are covered in Chapter 10.

What if you need to use the LIKE operator to search for patterns but also need to
search for a wildcard character as a literal in your value? For example, you need to search
for a value that starts with the % symbol, contains an uppercase A as the fourth character,
and ends with an uppercase T. In this query, you need to use the wildcard characters _
and % with the LIKE operator but also need to search for a literal % symbol as the first
character. The LIKE operator includes the ESCAPE option for indicating when wildcard
symbols should be used as literals rather than translated as wildcard characters. This
option allows the user to select the escape character. The escape character must precede
any wildcard characters in the search pattern that should be interpreted literally, not as
wildcard characters. To perform the search in this example with the ESCAPE option, first
review the data in the TESTING table, shown in Figure 8-22. Note that the row with the ID
1 contains a Tvalue of %ccAccT that can be used for this example.

272

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-22 Review TESTING table data

N O T E

The TESTING table is created with the Chapter 8 database script. This table isn’t part of the JustLee
database; it’s used only to demonstrate LIKE and sorting examples in this chapter. If you don’t have this
table in your schema, be sure to run the JLDB_Build_8.sql script as instructed previously.

Figure 8-23 shows the query with the pattern identified by using the ESCAPE keyword
followed by the escape character \, which must be enclosed in single quotation marks (' \ ').
This escape character must be placed immediately before any wildcard symbols that should
be treated as literal characters. In this case, the first character must be a % symbol, so the
escape character is placed immediately before it to instruct the LIKE operator to not treat this
character as a wildcard character.

FIGURE 8-23 Using the ESCAPE option with the LIKE operator

273

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Although Table 8-2 listed IS NULL and IS NOT NULL as comparison operators, they specifically address
searches based on a column having or not having a NULL value. Therefore, these two operators are
discussed in “Treatment of NULL Values” later in this chapter.

L O G I C A L O P E R A T O R S

At times, you need to search for records based on two or more conditions. In these
situations, you can use logical operators to combine search conditions. The logical
operators AND and OR are commonly used for this purpose. (The NOT operator
mentioned in Table 8-2 is also a logical operator in Oracle 12c, but it’s used to reverse the
meaning of search conditions rather than combine them.) Keep in mind that when a
query executes, records can be filtered with WHERE clause conditions. In other words,
each record in the table is compared with the stated condition. If the condition is TRUE
when compared with a record, the record is included in the results.

When the AND operator is used in the WHERE clause, both conditions combined by
the AND operator must be evaluated as TRUE, or the record isn’t included in the results.
For example, Figure 8-24 shows a query for titles of books that are published by Publisher
3 and in the Computer category. Because the search is for books meeting both conditions,
the conditions are combined with the AND operator.

FIGURE 8-24 Searching with multiple conditions and the AND logical operator

T I P

Recall that all data for JustLee Books is stored in uppercase letters because data was entered in this
format when the tables were created. If no rows are returned, make sure you typed COMPUTER in all
uppercase letters.

274

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

On the other hand, if you want a list of books that are published by Publisher 3 or in
the Computer category, you can use the OR operator, as shown in Figure 8-25. With the
OR operator, only one of the conditions must be TRUE to have the record included in the
results. As shown in the results, the first three records pass both conditions. The last
record passes only the category ¼ 'COMPUTER' condition; the pubid ¼ 3 condition
evaluates as FALSE for this record. Because the OR operator has been used, however,
only one condition has to be TRUE, so even though this book isn’t published by Publisher
3, it’s included in the results.

FIGURE 8-25 Searching with multiple conditions and the OR logical operator

T I P

Using a series of OR logical operators to join conditions based on the same column is identical to using
the IN comparison operator. For example, state ¼ 'GA' OR state ¼ 'CA' is the same as IN ('GA',

'CA'). Keep in mind that each condition must be a full comparison. You can’t use WHERE state ¼
'GA' OR 'CA', or an error occurs. The OR condition must be followed by a complete comparison, such
as state ¼ 'CA'.

Next, take a look at the order of logical operators. Because the WHERE clause can
contain multiple types of operators, you need to understand the order in which they’re
resolved:

• Arithmetic operations are solved first.
• Comparison operators (<, >, ¼, LIKE, and so forth) are solved next.
• Logical operators have a lower precedence and are evaluated last—in the

order NOT, AND, and OR.

If you need to change the order of evaluation, simply use parentheses to indicate the
operators to be resolved first. To see how this method works, look at the query results in
Figure 8-26. The list includes books that are published by Publisher 4 and cost more than

275

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

$15.00. The list also includes any book from the Family Life category. Although the OR
operator is actually listed first in the WHERE clause, Oracle 12c first evaluates the Pubid
and Cost conditions combined with the AND logical operator. After this operation is
solved, the Category condition preceding the OR logical operator is evaluated.

FIGURE 8-26 Searching with both AND and OR operators

After examining the previous query’s results, you realize that the order in which logical
operators were evaluated didn’t yield the output you want—to find any book costing more
than $15.00 that’s published by Publisher 4 or is in the Family Life category. To have
Oracle 12c evaluate these conditions in the right order, you must use parentheses to
identify any book that’s published by Publisher 4 or categorized as Family Life first. After
books meeting the Category or Publisher condition are found, the cost condition is then
evaluated, and only those records with a cost higher than $15.00 are displayed. Notice that
the query in Figure 8-27 returns results different from those in Figure 8-26.

FIGURE 8-27 Using parentheses to control the evaluation order for logical operators

276

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T R E A T M E N T O F N U L L V A L U E S

When you’re performing arithmetic operations or search conditions, NULL values can
cause unexpected results. A NULL value means no value has been stored in that field.
Don’t confuse a NULL value with a blank space. A NULL is the absence of data in a
field; a field containing a blank space does contain a value—a blank space—and is,
therefore, not a NULL value. When searching for NULL values, you can’t use the equal
sign (¼) because there’s no value to use for comparison in the search condition. When
checking for a NULL value, you’re actually checking the status of the column: Does data
exist or not? If you need to identify records that have a NULL value, you must use the
IS NULL comparison operator.

For example, when an order is shipped to a customer, the shipping date is entered
in the ORDERS table. If a date doesn’t appear in the Shipdate field, the order hasn’t
been shipped yet. To find any order that hasn’t been shipped, use the query shown in
Figure 8-28.

FIGURE 8-28 Searching for NULL values with the IS NULL operator

As shown in Figure 8-28, currently six orders are outstanding. Notice that when
you’re searching for a NULL value, you simply state the field to be searched followed
by the words IS NULL in the WHERE clause. If you want a list of all orders that have
shipped (that is, the Shipdate column contains an entry), simply add the logical
operator NOT. When searching for a field with the IS NOT NULL operator, you instruct
Oracle 12c to return any records with data available in the named field, as shown in
Figure 8-29.

277

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-29 Searching for non-NULL values with the IS NOT NULL operator

Be aware that using ¼ NULL in a search condition doesn’t raise an error; however, it
always returns no rows. Try the query in Figure 8-28 again, replacing IS NULL with ¼
NULL to see the results, shown in Figure 8-30.

No rows returned

FIGURE 8-30 Using the ¼ NULL operator by mistake

278

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

O R D E R B Y C L A U S E S Y N T A X

The ORDER BY clause, used to display query results in a sorted order, is listed at the end
of the SELECT statement, as shown in Figure 8-31 (which repeats the SELECT syntax
shown earlier in the chapter).

FIGURE 8-31 Syntax of the SELECT statement

The columns used to sort the results are listed in the ORDER BY clause. For example,
to see a list of all publishers sorted by the Name field, enter the SQL statement shown in
Figure 8-32.

FIGURE 8-32 Sorting results by publisher name in ascending order

In the query results, the second column (Name) is listed in ascending alphabetical
order. Note these important points:

• When sorting in ascending order, values are listed in this order:

1. Blank and special characters
2. Numeric values
3. Character values (uppercase first)
4. NULL values

• Unless you specify “DESC” for descending, the ORDER BY clause sorts in
ascending order by default.

279

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

View the data stored in the TESTING table again. To see the default sorting treatment
of character strings containing special characters, uppercase and lowercase characters,
numbers, blank spaces, and NULL values, use a sorting operation on the Tvalue column,
as shown in Figure 8-33. Review the order of rows in the results; the Descrip column
explains how different characters control the sort order.

FIGURE 8-33 Sorting on the Tvalue column

Figure 8-32 showed publishers sorted in the default name order. To view publishers in
descending alphabetical order by name, simply enter DESC after the column name. After
changing the sort order to descending, you get the results shown in Figure 8-34.

FIGURE 8-34 Sorting results by publisher name in descending order

280

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

If you want to clarify that a column is to be sorted in ascending order, you can specify ASC after the
column name. However, doing so isn’t necessary because ascending is the default order.

If a column alias is given to a field in the SELECT clause, you can reference the field
in the ORDER BY clause with the column alias—although doing so isn’t required. Take a
look at the example in Figure 8-35. Notice that “Publisher Name” is enclosed in double
quotation marks because this column alias contains a space.

FIGURE 8-35 Referencing a column alias in the ORDER BY clause

You can also use the ORDER BY clause with the optional NULLS FIRST or NULLS
LAST keywords to change the order for listing NULL values. By default, NULL values
are listed last when results are sorted in ascending order and first when they’re sorted
in descending order. The query in Figure 8-36 lists the last and first name of each
customer from California and the customer number of the person who referred the
customer to JustLee Books. The results are sorted in ascending order by the Referred
column.

281

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-36 The default sort order for NULL values

Suppose, however, you want the results sorted in ascending order, but you need the NULL
values listed first. To override the default order, you add NULLS FIRST in the ORDER BY
clause, which instructs Oracle 12c to place NULL values at the beginning of the list and sort
the remaining records in ascending order, as shown in Figure 8-37. (If you want a descending
order with NULL values listed last, you use NULLS LAST to override the default order.)

FIGURE 8-37 Using the NULLS FIRST option in the ORDER BY clause

Secondary Sort
In the previous examples, only one column was specified in the ORDER BY clause, which is
called a primary sort. In some cases, you might want to include a secondary sort, which
specifies a second field to sort by if an exact match occurs between two or more rows in the
primary sort. For example, telephone books list residential customers alphabetically by last
name. However, when two or more customers have the same last name, they’re listed in
alphabetical order by their first names. In other words, a primary sort is performed on the
last name and then, when necessary, a secondary sort is performed on the first name.

282

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

The limit on the number of columns that can be used in the ORDER BY clause is 255.

To illustrate, the query in Figure 8-38 specifies listing customers in descending order
by state. When more than one customer lives in a state, customers are to be sorted by
city—in ascending order. When looking at the query results, you can see that several
states have multiple residents. In these states, customers are sorted in ascending order,
according to the city in which they live. The descending sort order applies only to the
column after which it’s listed—State, in this example. Because City didn’t reference a sort
order, the default value of ascending is assumed.

FIGURE 8-38 Using primary and secondary sort columns

283

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T I P

In these examples, the column used for sorting is listed in the SELECT clause as well as the ORDER
BY clause, but doing so isn’t required. When necessary, you can reference a field in the ORDER BY
clause that hasn’t been used in the SELECT clause. However, if the DISTINCT or UNIQUE keyword is
used in the SELECT clause, you can use only the columns listed in the SELECT clause for sorting.

Sorting by SELECT Order
The query statement in Figure 8-39 requests a list of customers who live in the states GA
and FL. The statement also specifies listing the query results with a primary descending
sort on State and a secondary sort on City.

FIGURE 8-39 Sorting on the State and City columns

Oracle 12c also provides an abbreviated method for referencing the sort column if the
name is used in the SELECT clause. In the previous example, State and City are used in
both the SELECT and ORDER BY clauses. Instead of listing these column names again in
the ORDER BY clause, you can reference them by their positions in the SELECT clause’s
column list. Because State is listed third and City is fourth in the SELECT clause, you can
modify the SQL statement as shown in Figure 8-40 and get the same results.

284

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 8-40 Referencing positions of sort columns in the ORDER BY clause

Chapter Summary

• The WHERE clause can be included in a SELECT statement to restrict the rows a
query returns to only those meeting a specified condition.

• A column alias can’t be used to reference columns in a WHERE clause condition.
• When searching a nonnumeric field, search values must be enclosed in single

quotation marks.
• Comparison operators indicate how the record should relate to the search value.
• Mathematical comparison operators include ¼, >, <, >¼, and <¼ and the “not

equal to” operators <>, !¼, and ^¼.
• The BETWEEN ... AND comparison operator is used to search for records falling

within a specified range of values.
• The IN comparison operator identifies a list of values to use for the search

condition. A record must contain one of the values in the list to be included in the
query results.

• The LIKE comparison operator is used with the percent and underscore symbols
(% and _) to establish search patterns.

• The ESCAPE option can be used with the LIKE operator to perform literal
searches for characters representing wildcards.

• Logical operators, such as AND and OR, can be used to combine several search
conditions.

• The NOT logical operator can be used to reverse the comparison operation.

285

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• Logical operators are always evaluated in the order NOT, AND, and OR.
Parentheses can be used to override the evaluation order.

• When using the AND operator, all conditions must be TRUE for a record to be
returned in the results. However, with the OR operator, only one condition must be
TRUE.

• A NULL value is the absence of data, not a field with a blank space entered.
• Use the IS NULL comparison operator to match NULL values. The IS NOT NULL

comparison operator finds records that don’t contain NULL values in the indicated
column.

• You can sort query results by using an ORDER BY clause. When used, the
ORDER BY clause should be listed last in the SELECT statement.

• By default, records are sorted in ascending order. Entering DESC immediately
after the column name sorts records in descending order.

• Multiple columns can be used for sorting by listing each column name in a single
ORDER BY clause, separated by commas. The column you want used for the
primary sort should be listed first. If an exact match occurs between two or more
records, the next column listed (the secondary sort column) determines the correct
order, and soon.

• A column doesn’t have to be listed in the SELECT clause to serve as a basis for
sorting.

• An ascending sort order lists blanks and special characters first.
• A column in the ORDER BY clause can be referenced with its position number in

the SELECT clause instead of the column name.

Chapter 8 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Element Description Example

Optional SELECT clauses

WHERE clause Specifies a search condition SELECT * FROM customers
WHERE state ¼ 'GA';

ORDER BY
clause

Specifies the display order of query
results

SELECT * FROM publisher
ORDER BY name;

Mathematical Comparison Operators

¼ “Equality” operator—requires an
exact match of the record data
and the search value

WHERE cost ¼ 55.95

286

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Element Description Example

> “Greater than” operator— requires
a record to be greater than the search value

WHERE cost > 55.95

< “Less than” operator— requires a record
to be less than the search value

WHERE cost < 55.95

<>, !¼, ^¼ “Not equal to” operator— requires a
record to not match the search value

WHERE cost <> 55.95
or
WHERE cost !¼ 55.95
or
WHERE cost ^¼ 55.95

<¼ “Less than or equal to” operator—requires
a record to be less than or an exact match
with the search value

WHERE cost <¼ 55.95

>¼ “Greater than or equal to” operator—requires
a record to be greater than or an exact match
with the search value

WHERE cost >¼ 55.95

Other Comparison Operators

[NOT] BETWEEN
x AND y

Searches for records in a specified range
of values

WHERE cost BETWEEN 40
AND 65

[NOT] IN
(x,y,...)

Searches for records matching one of the
items in the list

WHERE cost IN (22,
55.95,13.50)

[NOT] LIKE Searches for records matching a search
pattern—used with wildcard characters

WHERE lastname LIKE.
'_A%'

IS[NOT] NULL Searches for records with a NULL value in
the indicated column

WHERE referred IS NULL

Wildcard Characters

% Percent sign wildcard represents any
number of characters

WHERE lastname LIKE
'%R%'

– Underscore symbol wildcard represents exactly
one character in the indicated position

WHERE lastname LIKE
'_A%'

Logical Operators

AND Combines two conditions together—record
must match both conditions

WHERE cost > 20 AND
retail < 50

OR Requires a record to match only one
of the search conditions

WHERE cost > 20 OR
retail < 50

287

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. Which clause of an SQL query is used to restrict the number of rows returned?

2. Which clause of an SQL query displays the results in a specific sequence?

3. Which operator can you use to find any books with a retail price of at least $24.00?

4. Which operator should you use to find NULL values?

5. The IN comparison operator is similar to which logical operator?

6. When should single quotation marks be used in a WHERE clause?

7. What’s the effect of using the NOT operator in a WHERE clause?

8. When should a percent sign (%) be used with the LIKE operator?

9. When should an underscore symbol (_) be used with the LIKE operator?

10. Because % is a wildcard character, how can the LIKE operator search for a literal percent
sign (%) in a character string?

Multiple Choice

To answer the following questions, refer to the tables in the JustLee Books database.

1. Which of the following SQL statements isn’t valid?

a. SELECT address || city || state || zip "Address" FROM customers

WHERE lastname ¼ 'SMITH';

b. SELECT * FROM publisher ORDER BY contact;

c. SELECT address, city, state, zip FROM customers

WHERE lastname ¼ "SMITH";

d. All the above statements are valid and return the expected results.

2. Which clause is used to restrict rows or perform selection?

a. SELECT

b. FROM

c. WHERE

d. ORDER BY

3. Which of the following SQL statements is valid?

a. SELECT order# FROM orders WHERE shipdate ¼ NULL;

b. SELECT order# FROM orders WHERE shipdate ¼ 'NULL';

c. SELECT order# FROM orders WHERE shipdate ¼ "NULL";

d. None of the statements are valid.

4. Which of the following returns a list of all customers’ names sorted in descending order by
city within state?

a. SELECT name FROM customers

ORDER BY desc state, city;

288

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. SELECT firstname, lastname FROM customers

SORT BY desc state, city;

c. SELECT firstname, lastname FROM customers

ORDER BY state desc, city;

d. SELECT firstname, lastname FROM customers

ORDER BY state desc, city desc;

e. SELECT firstname, lastname FROM customers

ORDER BY 5 desc, 6 desc;

5. Which of the following doesn’t return a customer with the last name THOMPSON in the
query results?

a. SELECT lastname FROM customers WHERE lastname ¼ "THOMPSON";

b. SELECT * FROM customers;

c. SELECT lastname FROM customers WHERE lastname > 'R';

d. SELECT * FROM customers WHERE lastname < 'V';

6. Which of the following displays all books published by Publisher 1 with a retail price of at
least $25.00?

a. SELECT * FROM books WHERE pubid ¼ 1 AND retail >¼ 25;

b. SELECT * FROM books WHERE pubid ¼ 1 OR retail >¼ 25;

c. SELECT * FROM books WHERE pubid ¼ 1 AND WHERE retail > 25;

d. SELECT * FROM books WHERE pubid ¼ 1, retail >¼ 25;

e. SELECT * FROM books WHERE pubid ¼ 1, retail >¼ $25.00;

7. What’s the default sort sequence for the ORDER BY clause?

a. ascending

b. descending

c. the order in which records are stored in the table

d. There’s no default sort sequence.

8. Which of the following doesn’t include the display of books published by Publisher 2 and
having a retail price of at least $35.00?

a. SELECT * FROM books WHERE pubid ¼ 2, retail >¼ $35.00;

b. SELECT * FROM books WHERE pubid ¼ 2 AND NOT retail < 35;

c. SELECT * FROM books WHERE pubid IN (1, 2, 5) AND retail NOT BETWEEN

1 AND 29.99;

d. All the above statements display the specified books.

e. None of the above statements display the specified books.

289

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. Which of the following includes a customer with the first name BONITA in the results?

a. SELECT * FROM customers WHERE firstname ¼ 'B%';

b. SELECT * FROM customers WHERE firstname LIKE '%N%';

c. SELECT * FROM customers WHERE firstname ¼ '%N%';

d. SELECT * FROM customers WHERE firstname LIKE '_B%';

10. Which of the following represents exactly one character in a pattern search?

a. ESCAPE

b. ?

c. –

d. %

e. none of the above

11. Which of the following returns the book HANDCRANKED COMPUTERS in the results?

a. SELECT * FROM books WHERE title ¼ 'H_N_%';

b. SELECT * FROM books WHERE title LIKE "H_N_C%";

c. SELECT * FROM books WHERE title LIKE 'H_N_C%';

d. SELECT * FROM books WHERE title LIKE '_H%';

12. Which of the following clauses is used to display query results in a sorted order?

a. WHERE

b. SELECT

c. SORT

d. ORDER

e. none of the above

13. Which of the following SQL statements returns all books published after March 20, 2005?

a. SELECT * FROM books WHERE pubdate > 03-20-2005;

b. SELECT * FROM books WHERE pubdate > '03-20-2005';

c. SELECT * FROM books WHERE pubdate > '20-MAR-05';

d. SELECT * FROM books WHERE pubdate > 'MAR-20-05';

14. Which of the following lists all books published before June 2, 2004 and all books
published by Publisher 4 or in the Fitness category?

a. SELECT * FROM books WHERE category ¼ 'FITNESS' OR pubid ¼ 4

AND pubdate < '06-02-2004';

b. SELECT * FROM books WHERE category ¼ 'FITNESS' AND pubid ¼ 4

OR pubdate < '06-02-2004';

c. SELECT * FROM books WHERE category ¼ 'FITNESS' OR (pubid ¼ 4 AND

pubdate < '06-02-2004');

d. SELECT * FROM books WHERE category ¼ 'FITNESS'

OR pubid ¼ 4, pubdate < '06-02-04';

e. none of the above

290

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15. Which of the following finds all orders placed before April 5, 2009 that haven’t yet shipped?

a. SELECT * FROM orders WHERE orderdate < '04-05-09'

AND shipdate ¼ NULL;

b. SELECT * FROM orders WHERE orderdate < '05-04-09'

AND shipdate IS NULL;

c. SELECT * FROM orders WHERE orderdate < 'APR-05-09'

AND shipdate IS NULL;

d. SELECT * FROM orders WHERE orderdate < '05-APR-09'

AND shipdate IS NULL;

e. none of the above

16. Which of the following symbols represents any number of characters in a pattern search?

a. *

b. ?

c. %

d. –

17. Which of the following lists books generating at least $12.00 in profit?

a. SELECT * FROM books WHERE retail-cost > 12;

b. SELECT * FROM books WHERE retail-cost <¼ 12;

c. SELECT * FROM books WHERE profit >¼ 12;

d. SELECT * FROM books WHERE retail-cost ¼> 12.00;

e. none of the above

18. Which of the following lists each book having a profit of at least $10.00 in descending order
by profit?

a. SELECT * FROM books WHERE profit ¼> 10.00

ORDER BY "Profit" desc;

b. SELECT title, retail-cost "Profit" FROM books

WHERE profit ¼> 10.00

ORDER BY "Profit" desc;

c. SELECT title, retail-cost "Profit" FROM books

WHERE "Profit" ¼> 10.00

ORDER BY "Profit" desc;

d. SELECT title, retail-cost profit FROM books

WHERE retail-cost >¼ 10.00

ORDER BY "PROFIT" desc;

e. SELECT title, retail-cost "Profit" FROM books

WHERE profit ¼> 10.00

ORDER BY 3 desc;

291

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. Which of the following includes the book HOW TO GET FASTER PIZZA in the query
results?

a. SELECT * FROM books WHERE title LIKE '%AS_E%';

b. SELECT * FROM books WHERE title LIKE 'AS_E%';

c. SELECT * FROM books WHERE title ¼ '%AS_E%';

d. SELECT * FROM books WHERE title ¼ 'AS_E%';

20. Which of the following returns all books published after March 20, 2005?

a. SELECT * FROM books WHERE pubdate > 03-20-2005;

b. SELECT * FROM books WHERE pubdate > '03-20-2005';

c. SELECT * FROM books WHERE pubdate NOT < '20-MAR-05';

d. SELECT * FROM books WHERE pubdate NOT < 'MAR-20-05';

e. none of the above

Hands-On Assignments

To perform the following assignments, refer to the tables created in the JLDB_Build_8.sql script
at the beginning of the chapter. Give the SQL statements and output for the following data
requests:

1. Which customers live in New Jersey? List each customer’s last name, first name, and state.

2. Which orders shipped after April 1, 2009? List each order number and the date it shipped.

3. Which books aren’t in the Fitness category? List each book title and category.

4. Which customers live in Georgia or New Jersey? Put the results in ascending order by last
name. List each customer’s customer number, last name, and state. Write this query in two
different ways.

5. Which orders were placed on or before April 1, 2009? List each order number and order
date. Write this query in two different ways.

6. List all authors whose last name contains the letter pattern “IN.” Put the results in order of
last name, then first name. List each author’s last name and first name.

7. List all customers who were referred to the bookstore by another customer. List each
customer’s last name and the number of the customer who made the referral.

8. Display the book title and category for all books in the Children and Cooking categories.
Create three different queries to accomplish this task: a) a search pattern operation, b) a
logical operator, and c) another operator not used in a or b.

9. Use a search pattern to find any book title with “A” for the second letter and “N” for the
fourth letter. List each book’s ISBN and title. Sort the list by title in descending order.

10. List the title and publish date of any computer book published in 2005. Perform the task of
searching for the publish date by using three different methods: a) a range operator, b) a
logical operator, and c) a search pattern operation.

292

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Advanced Challenge

To perform these activities, refer to the JustLee database tables.
During an afternoon at work, you receive various requests for data stored in the

database. As you fulfill each request, you decide to document the SQL statements you used
to find the data to assist with future requests. The following are two of the requests that were
made:

1. A manager at JustLee Books requests a list of the titles of all books generating a profit of at
least $10.00. The manager wants the results listed in descending order, based on each
book’s profit.

2. A customer service representative is trying to identify all books in the Computer or Family
Life category and published by Publisher 1 or Publisher 3. However, the results shouldn’t
include any book selling for less than $45.00.

For each request, create a document showing the SQL statement and the query results.

Case Study: City Jail

Note: Run the CityJail_8.sql file provided by your instructor to ensure that all necessary
tables and constraints are available for this case study. This script isn’t included in
student data files because case study assignments in previous chapters include table
creation challenges. This script rebuilds the City Jail database. Don’t be concerned with
errors from the DROP TABLE commands, which delete any existing tables of the same
names.

The following list reflects common data requests from city managers. Write the
SQL statements to satisfy the requests. If the query can be accomplished by using
different operators, supply alternative solutions so that the performance-tuning group can
test them and identify the more efficient statements. Test the statements and show
execution results.

1. List all criminal aliases beginning with the letter B.

2. List all crimes that occurred (were charged) during the month October 2008. List the crime
ID, criminal ID, date charged, and classification.

3. List all crimes with a status of CA (can appeal) or IA (in appeal). List the crime ID, criminal
ID, date charged, and status.

4. List all crimes classified as a felony. List the crime ID, criminal ID, date charged, and
classification.

5. List all crimes with a hearing date more than 14 days after the date charged. List the crime
ID, criminal ID, date charged, and hearing date.

6. List all criminals with the zip code 23510. List the criminal ID, last name, and zip code. Sort
the list by criminal ID.

7. List all crimes that don’t have a hearing date scheduled. List the crime ID, criminal ID, date
charged, and hearing date.

8. List all sentences with a probation officer assigned. List the sentence ID, criminal ID, and
probation officer ID. Sort the list by probation officer ID and then criminal ID.

293

Restricting Rows and Sorting Data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. List all crimes that are classified as misdemeanors and are currently in appeal. List the
crime ID, criminal ID, classification, and status.

10. List all crime charges with a balance owed. List the charge ID, crime ID, fine amount, court
fee, amount paid, and amount owed.

11. List all police officers who are assigned to the precinct OCVW or GHNT and have a status
of active. List the officer ID, last name, precinct, and status. Sort the list by precinct and
then by officer last name.

294

Chapter 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R9
JOINING DATA FROM
MULTIPLE TABLES

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Identify a Cartesian join

• Create an equality join with the WHERE clause

• Create an equality join with the JOIN keyword

• Create a non-equality join with the WHERE clause

• Create a non-equality join with the JOIN … ON approach

• Create a self-join with the WHERE clause

• Create a self-join with the JOIN keyword

• Distinguish an inner join from an outer join

• Create an outer join with the WHERE clause

• Create an outer join with the OUTER keyword

• Use set operators to combine the results of multiple queries

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

The main advantage of using a relational database is that you can eliminate data
redundancy by structuring data in multiple tables. However, this structure requires
combining or joining data rows from multiple tables before you can perform many kinds
of queries. This chapter focuses on adding join conditions, which are instructions in
queries that combine data from more than one table.

Traditionally, Oracle database users had to include join conditions in the WHERE
clause to specify how data rows of different tables are related. Oracle WHERE clause joins
are also referred to as native joins. Beginning with Oracle 9i, support for ANSI-compliant
joins was introduced; these joins use the JOIN keyword in the FROM clause. (American
National Standards Institute [ANSI] was introduced in Chapter 1.) The ANSI JOIN method
has several advantages over a traditional WHERE clause join. It increases portability of
SQL code between different DBMS platforms, as most relational databases are ANSI
compliant. Also, because the WHERE clause is reserved for including only conditions that
restrict rows from being returned, the ANSI JOIN method has improved statement clarity.

In this chapter, you examine several kinds of joins as well as the syntax for creating
each join, first using the traditional WHERE clause approach and then using the ANSI
JOIN method. You need to understand both approaches to creating joins to support
existing code, to prepare new systems with increased portability goals, and to pass the
Oracle 12c SQL exam. Because no performance advantages are associated with either join
method, both methods are widely used. You also explore combining data rows from
multiple tables with set operators, which allow you to combine rows from multiple
queries. Table 9-1 gives you an overview of this chapter’s topics.

TABLE 9-1 Types of Joins and Set Operators

Element Description

Cartesian join (also
known as a Cartesian
product or cross join)

Replicates each row from the first table with every row from the second
table. Creates a join between tables by displaying every possible record
combination. Can be created by two methods:

• Not including a joining condition in a WHERE clause

• Using the JOIN method with the CROSS JOIN keywords

Equality join (also
known as an equijoin,
an inner join, or a
simple join)

Creates a join by using a commonly named and defined column. Can be
created by two methods:

• Using the WHERE clause

• Using the JOIN method with the NATURAL JOIN, JOIN … ON, or
JOIN … USING keywords

Non-equality join Joins tables when there are no equivalent rows in the tables to be joined—
for example, to match values in one column of a table with a range of values
in another table. Can be created by two methods:

• Using the WHERE clause

• Using the JOIN method with the JOIN … ON keywords

296

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

D A T A B A S E P R E P A R A T I O N

Before attempting to work through the examples in this chapter, make sure you have completed the
following two tasks. First, if you haven’t already run the JLDB_Build_8.sql script from Chapter 8,
execute this script to rebuild the JustLee Books database. Second, run the JLDB_Build_9.sql file in the
Chapter 9 folder of your data files to create the necessary additions for the JustLee Books database.

C A R T E S I A N J O I N S

In a Cartesian join, also called a Cartesian product or cross join, each record in the
first table is matched with each record in the second table. This type of join is useful
when you’re performing certain statistical procedures for data analysis. Therefore, if you
have three records in the first table and four in the second table, the first record from the
first table is matched with each of the four records in the second table. Then the second
record of the first table is matched with each of the four records from the second table
and so on.

As shown in Figure 9-1, a Cartesian join of Table 1 and Table 2 results in 12 records
being displayed. You can always identify a Cartesian join because the resulting number of
rows is (# rows in Table 1) * (# rows in Table 2). In Figure 9-1, it’s 3 rows * 4 rows,
resulting in 12 rows.

TABLE 9-1 Types of Joins and Set Operators (continued)

Element Description

Self-join Joins a table to itself. Can be created by two methods:

• Using the WHERE clause

• Using the JOIN method with the JOIN … ON keywords

Outer join Includes records of a table in output when there’s no matching record in
the other table. Can be created by two methods:

• Using the WHERE clause with a (þ) operator

• Using the JOIN method with the OUTER JOIN keywords and the
assigned type of LEFT, RIGHT, or FULL

Set operators Combines results of multiple SELECT statements. Includes the keywords
UNION, UNION ALL, INTERSECT, and MINUS.

297

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-1 Results of a Cartesian join

Sometimes a user intends to generate a Cartesian product, but usually this intention
is the exception rather than the rule. Be aware that selecting data from multiple tables in
a query and accidentally omitting a correct join also produces a Cartesian product, which,
in this case, is an incorrect result. Most Cartesian products are generated in error.

Cartesian Join: Traditional Method
JustLee Books needs to perform a manual book inventory in all three of its book
warehouses. The manager has requested an inventory sheet listing each book for each
warehouse along with a column to record the physical count. In this case, the
WAREHOUSES table can be joined with the BOOKS table to produce a Cartesian product.
Figure 9-2 shows the query including the two tables and the results. The results include
42 rows: 3 rows (WAREHOUSES table) *14 rows (BOOKS table) ¼ 42 rows. In this case, a
Cartesian join produces the intended results. Note that a blank literal is used to create an
empty Count column in the output.

N O T E

In Figure 9-2, only the first 15 rows of output are shown to conserve space. Several figures in this
chapter show only partial output for the same reason.

298

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Partial
output
shown

FIGURE 9-2 Producing an intended Cartesian join

Now suppose you need to find the publisher’s name for each book in inventory.
The SELECT statement in Figure 9-3 instructs Oracle 12c to list the Title column,
which is stored in the BOOKS table, and the Name column, which is stored in the
PUBLISHER table. (Again, only the first 15 rows of output are shown to conserve
space.)

Although there are only 14 book titles in the database, 70 records are returned!
These results should lead you to be suspicious of the output. The problem with the SQL
statement in Figure 9-3 is that the columns to be retrieved from the two tables are
specified, but no instructions on how to join the table rows correctly are included.
Because a join condition isn’t included, Oracle automatically replicates every possible
combination of records, producing a Cartesian join. In “Equality Joins” later in this
chapter, you learn how to instruct Oracle to match or join rows of multiple tables
correctly, based on common column values.

299

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Partial
output
shown

FIGURE 9-3 Producing an unintentional Cartesian join

N O T E

FOREIGN KEY constraints define relationships between table columns; however, these definitions aren’t
used by queries. A FOREIGN KEY constraint is activated only for DML actions.

Cartesian Join: JOIN Method
Beginning with Oracle 12c, the CROSS keyword, combined with the JOIN keyword, can
be used in the FROM clause to explicitly instruct Oracle to create a Cartesian (cross) join.
The CROSS JOIN keywords instruct the database system to create cross-products, using
all records of the tables listed in the query. Figure 9-4 shows the same book inventory
listing from the earlier example produced with the JOIN method.

300

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Partial
output
shown

FIGURE 9-4 Using the CROSS JOIN keywords

Notice the syntax of the SQL statement in Figure 9-4. In the FROM clause, the names of the
tables to be used in the Cartesian join are separated by the CROSS JOIN keywords. Don’t use
commas to separate any parts of the FROM clause, as you would with the traditional method.

T I P

If you get an error message, make certain a comma is not entered after the BOOKS table name in the
FROM clause.

E Q U A L I T Y J O I N S

The query in Figure 9-3 returned an unintentional Cartesian join because Oracle didn’t
know what data the two tables had in common. The most common type of join used in
the workplace is based on two (or more) tables having equivalent data stored in a
common column. These joins are called equality joins but are also referred to as
equijoins, inner joins, or simple joins.

301

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A common column is a column with equivalent data existing in two or more tables.
For example, both the BOOKS and PUBLISHER tables have a common column called
Pubid containing an identification code assigned to each publisher. Therefore, when you
want a list of publishers for each book in the BOOKS table, you need to match the
publisher ID stored for each book in the BOOKS table with the corresponding publisher
ID in the PUBLISHER table. The results should include only the name of the publisher
whenever there’s a match between the Pubid columns in each table.

To master join operations, you need a solid understanding of the database structure.
An E-R model, as developed in Chapter 1, identifies table relationships. Figure 9-5 shows
the E-R model for JustLee Books. Each of the one-to-many relationship lines should be
supported with a FOREIGN KEY (FK) constraint to ensure consistency of data for
common columns.

ISBN
ISBN
AuthorID

AuthorID
Lname

Name
Contact
Phone

FnameTitle
Pubdate
PubID

PubID

Cost
Retail

Gift
Minretail
Maxretail

Discount
Category

ORDERS

ORDERITEMS

BOOKS

PROMOTION

BOOKAUTHOR

PUBLISHER

AUTHOR

CUSTOMERS

Customer#
Lastname
Firstname
Email
Address
City
State
Zip
Referred
Region

Customer#
Order#

Orderdate
Shipdate
Shipstreet
Shipcity
Shipstate
Shipzip
Shipcost

Order#
Item#
ISBN
Quantity
Paideach

FIGURE 9-5 The JustLee Books table structure

A review of referential integrity or FK constraints can help you identify the common
columns between tables. Keep in mind that even though common columns typically have
the same name, this isn’t a requirement; you can’t depend on column names alone.
Review the FK constraints in the JustLee Books table creation script from Chapter 8
(JLDB_Build_8.sql) to identify the common column for each relationship line in the E-R
model. These common columns are used in query join conditions to instruct the database
system how to relate rows of multiple tables logically.

302

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

Don’t be concerned with the relationship between the BOOKS and PROMOTION tables at this point.
This relationship is addressed in “Non-Equality Joins” later in this chapter.

The following section explains how to create joins based on a common column
containing equivalent data stored in multiple tables.

Equality Joins: Traditional Method
The traditional way to include join conditions and avoid an unintended Cartesian result is to
use the WHERE clause to instruct Oracle 12c how to join tables correctly. You have used
the WHERE clause in previous chapters to provide conditions that restrict the rows affected
by the SQL statement. A traditional join adds join conditions with other conditions in the
WHERE clause. In other words, the WHERE clause can perform two different activities:
joining tables and providing conditions to limit or filter the rows that are affected.

Using the same example from the section on Cartesian joins (Figure 9-3), include the
WHERE clause to retrieve a list of books that includes the publisher name. Figure 9-6
shows the correct query with a join condition in the WHERE clause.

FIGURE 9-6 An equality join

303

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The WHERE clause tells Oracle 12c that the BOOKS table and the PUBLISHER table
are related by the Pubid column. The equal sign specifies that the contents of the Pubid
column in each table must be exactly equal for the rows to be joined and returned in the
results. Also, notice that the Pubid column names are prefixed with their corresponding
table names. Any time Oracle 12c references multiple tables having the same column
name, the column name must be prefixed with the table name. If your query is ambiguous
and doesn’t specify exactly which column is the common column, you get an error
message. By entering publisher.pubid, for example, you’re specifying the Pubid
column in the PUBLISHER table, which is known as “qualifying” the column name.
A column qualifier indicates the table containing the column being referenced.

Suppose you want to include additional information—the publisher ID—in the output.
If the publisher ID is also listed in the SELECT clause to be included in the query output,
the table name prefix is required. If this prefix is omitted, you get a column ambiguity
error message, as shown in Figure 9-7.

FIGURE 9-7 A “column ambiguously defined” error

The error occurs because Oracle finds a column named Pubid in both tables and is
confused as to which table should be used to retrieve the values. In this case, the Pubid
column is the common column of these two tables and is the same value in a proper join.
Therefore, you can qualify the Pubid column in the SELECT clause with either table and
the query will work.

304

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

If a column isn’t qualified with a table name in a query involving multiple tables, Oracle searches
all tables to determine whether the column exists in only a single table. Most developers qualify
all columns to avoid the additional processing needed to determine which table contains
the column.

Search conditions can be added to the WHERE clause along with join conditions, as
shown in Figure 9-8. Notice the AND logical operator in the WHERE clause. Including
this operator limits query results to only those from Publisher 4. Any of the search
conditions used in Chapter 8 can be issued in the WHERE clause when you’re joining a
table.

FIGURE 9-8 Including search and join conditions in a WHERE clause

You can also use table aliases to simplify the process of qualifying columns
with the table name. In Figure 9-9, the SELECT statement requests the title, publisher
ID, and publisher name for any book costing less than $15.00 or any book from
Publisher 1.

305

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-9 Equality join with table aliases

Take a closer look at some elements in Figure 9-9:

• The SELECT clause not only lists the columns to be displayed, but also
includes table aliases for the PUBLISHER table (p) and BOOKS table (b).
A period is used to separate a table alias from a column name, as when you
qualify a column with the full table name. These aliases are assigned in the
FROM clause (discussed next).

• The table aliases in the FROM clause work like a column alias by temporarily
giving a table a different name. Table aliases offer a couple of advantages. First,
they improve processing efficiency, as the system no longer needs to identify
which table a specified column is in. Second, coding is simplified when the full
table name doesn’t have to be indicated (although a table alias can have as
many as 30 characters). There’s one important rule you must remember when
using a table alias: If a table alias is assigned in the FROM clause, it must be
used any time the table is referenced in that SQL statement.

• The WHERE clause includes the join condition for the BOOKS and PUBLISHER
tables as well as other search conditions using the AND and OR logical operators.

• The statement concludes with an ORDER BY clause to display the results in a
sorted order.

T I P

Make sure you use the letter “p” (the alias for the PUBLISHER table) or the letter “b” (the alias for the
BOOKS table) before the Pubid column name, or you’ll get an error message.

Up to this point, the join examples have only included two tables, but suppose you need a
list of all customer names along with all books each customer has purchased. The book titles
are in the BOOKS table and the customer names are in the CUSTOMERS table. Would you

306

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

join the BOOKS and CUSTOMERS tables to produce the needed list? No! Joins need to follow
logical relationships between tables. In this case, the BOOKS and CUSTOMERS tables aren’t
directly related. Review the E-R models for the JustLee Books database in Figure 9-5. These
models are helpful in planning join operations because they show table relationship lines.

In this example, the join operation needs to include four tables: CUSTOMERS,
ORDERS, ORDERITEMS, and BOOKS. This task requires three join operations, as follows:

• Join CUSTOMERS to ORDERS based on Customer#
• Join ORDERS to ORDERITEMS based on Order#
• Join ORDERITEMS to BOOKS based on ISBN

T I P

The number of join operations needed is the number of tables in the query minus one.

Multiple join operations are included in a WHERE clause by using the AND logical
operator, as shown in Figure 9-10. Although not all rows are shown in this figure, this
query produces 32 rows of output.

Partial
output
shown

FIGURE 9-10 Joining four tables

307

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Keep in mind that even though no columns from the ORDERS and ORDERITEMS
tables are specifically selected for output, these tables are needed in the query to join
tables together logically.

Regardless of how many join operations are required, other conditions can still be
added in the WHERE clause. For example, Figure 9-11 shows the previous query modified
to select books only in the Computer category. The results have been reduced from
32 rows to 10 rows of output.

FIGURE 9-11 Multiple joins combined with a search condition

Equality Joins: JOIN Method
You can use three approaches to create an equality join that uses the JOIN keyword:
NATURAL JOIN, JOIN … USING, and JOIN … ON:

• The NATURAL JOIN keywords create a join automatically between two
tables, based on columns with matching names.

• The USING clause allows you to create joins based on a column that has the
same name and definition in both tables.

• When the tables to be joined in a USING clause don’t have a commonly
named and defined field, you must add the ON clause to the JOIN keyword to
specify how the tables are related.

308

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The query in Figure 9-12 uses the NATURAL JOIN keywords to instruct Oracle 12c to
list the title of each book in the BOOKS table—and the corresponding publisher ID
number and publisher name.

FIGURE 9-12 Using the NATURAL JOIN keywords

Because both the BOOKS and the PUBLISHER tables contain the Pubid column, this
column is a common column and should be used to relate the two tables. When using the
NATURAL JOIN keywords, you aren’t required to specify columns the two tables have in
common. The NATURAL keyword implies that the two specified tables have at least one
column in common with the same name and contain the same datatype. Oracle 12c
compares the two tables and uses the common columns to join the table.

Unlike the traditional method, you aren’t allowed to use a qualifier for the column
used to create the join. In essence, because the data value in a column is equivalent in
both tables when the records match, it doesn’t make sense to identify the column from
only one of the tables. Therefore, Oracle 12c returns an error message if a qualifier is used
on the join column anywhere in a SELECT statement including the NATURAL JOIN
keywords, as shown in Figure 9-13.

309

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-13 Column qualifier error with a NATURAL JOIN

Most developers avoid using a NATURAL JOIN because it can cause unexpected
results. What if a column named “Description” is added to both the BOOKS and
PUBLISHER tables but the columns aren’t related to each other? A NATURAL JOIN
attempts to use these columns in a join operation, even though they have no
relationship. Developers prefer a join that explicitly specifies what columns should be
used to join the rows. This join is accomplished by including a USING clause
immediately after the FROM clause. Figure 9-14 reissues the previous query with the
JOIN … USING keywords. Notice that the query returns the same results as the
NATURAL JOIN keywords.

N O T E

Because the statement in Figure 9-14 doesn’t include an ORDER BY clause, your results might be listed
in a different order for this query and other queries in the chapter.

310

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-14 Performing a join with the JOIN … USING keywords

As with the NATURAL JOIN keywords, a column referenced by a USING clause can’t
contain a column qualifier anywhere in the SELECT statement. In addition, the column
referenced in the USING clause must be enclosed in parentheses. Qualifying all other
columns in the SELECT clause, as shown in Figure 9-14, is still a good practice.

T I P

You might come across equijoin statements using the INNER JOIN keywords instead of just the JOIN
keyword. If a join type isn’t specified (CROSS, INNER, and so forth), the INNER type is used implicitly
(by default). All equijoins in this textbook use just the JOIN keyword for brevity. As an example of using
the INNER keyword, the statement shown in Figure 9-14 could be written as follows:

SELECT b.title, pubid, p.name

FROM publisher p INNER JOIN books b

USING (pubid);

The USING clause technique requires a commonly named column to perform the join.
However, perhaps you have created tables with common columns but without a common
name. When there are no commonly named columns to use in a join, you need to use the
JOIN keyword in the FROM clause and add an ON clause immediately after the FROM
clause to specify which fields are related.

311

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To demonstrate this join, a PUBLISHER2 table was created in the JLDB_Build_9.sql
script, which is the same as the PUBLISHER table except the Pubid column is named Id.
Figure 9-15 uses the same example as in previous queries, listing the Title, Pubid (or Id),
and Name columns from the BOOKS and PUBLISHER2 tables. The ON clause in this case
instructs Oracle to join rows by using the Pubid column of the BOOKS table (with the alias
“b”) and the Id column of the PUBLISHER2 table (with the alias “p”).

FIGURE 9-15 Performing a join with the JOIN … ON keywords

Column qualifiers are used in this example, but they aren’t required because all field
names referenced in the query are unique to a particular table. Even though the ON
clause is required to join columns with different names, this technique can also be used
instead of the USING clause when common column names exist. Again, with columns
having the same name, there might be ambiguity when referencing columns with the
JOIN … ON keywords, so Oracle 12c requires column qualifiers to avoid possible

312

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ambiguity. Using the ON clause or USING clause in a SELECT statement gives you the
freedom to use the WHERE clause only for restricting rows to be included in the results,
which can improve the readability of complex SELECT statements. Figure 9-16 shows
the JOIN … ON approach to return the title, publisher ID, and publisher name for all
books published by Publisher 4.

FIGURE 9-16 The JOIN method reserves the WHERE clause for search conditions

There are two main differences between using the USING and ON clauses with the
JOIN keyword:

• The USING clause can be used only if the tables being joined have a
common column with the same name. This rule isn’t a requirement for the
ON clause.

• A condition is specified in the ON clause; this isn’t allowed in the USING
clause. The USING clause can contain only the name of the common
column.

To see how to perform ANSI-compliant joins involving more than two tables,
return to the request for a list of all customer names with all book titles each
customer has purchased from the Computer category. As mentioned, to perform this
join operation, you need to include four tables: CUSTOMERS, ORDERS, ORDERITEMS,
and BOOKS. The query in Figure 9-17 shows the required join operation with the
USING clause.

313

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-17 Multiple joins combined with a search condition

N O N - E Q U A L I T Y J O I N S

With an equality join, the data value of a record stored in the common column for the
first table must match the data value in the second table. However, in many cases, there’s
no exact match. A non-equality join is used when the related columns can’t be joined
with an equal sign—meaning there are no equivalent rows in the tables to be joined.

For example, the shipping fee charged by many freight companies is based on the
weight of the item being shipped. To use a database table to determine shipping fees, you
could store every possible weight and its corresponding fee in a table. When an item is
shipped, you could use an equality join to match the item’s weight to the equivalent weight
stored in the table and find the correct fee. However, most shipping fees are based on a
scale, or range, of weights. For example, an item weighing between 3 and 5 pounds might
have one fee, and an item weighing between 5 and 8 pounds might have another fee.

A non-equality join enables you to store a range’s minimum value in one column of a
record and the maximum value in another column. So instead of finding a column-
to-column match, you can use a non-equality join to determine whether the item being
shipped falls between minimum and maximum ranges in the columns. If the join does find a
matching range for the item, the corresponding shipping fee can be returned in the results.

As with the traditional method of equality joins, a non-equality join can be performed
in a WHERE clause. In addition, the JOIN keyword can be used with the ON clause to
specify relevant columns for the join. First, take a look at creating a non-equality join with
the WHERE clause, and then see how to use the JOIN … ON approach.

314

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Non-equality Joins: Traditional Method
Once a year, JustLee Books offers a weeklong promotion in which customers receive a gift
based on the value of each book purchased. If a customer purchases a book with a retail
price of $12 or less, the customer receives a bookmark. If the retail price is more than $12
but less than or equal to $25, the customer receives a box of book-owner labels. For books
retailing for more than $25 and less than or equal to $56, the customer is entitled to a free
book cover. For books retailing for more than $56, the customer receives free shipping.
Figure 9-18 shows the PROMOTION table.

FIGURE 9-18 Contents of the PROMOTION table

Because the rows in the BOOKS and PROMOTION tables don’t contain equivalent
values, you must use a non-equality join to determine which gift a customer receives
during the promotion, as shown in Figure 9-19. The BETWEEN operator is used in the
WHERE clause to determine the range in which a book’s retail price falls. Based on the
range specified by the Minretail and Maxretail columns, the query determines which gift is
appropriate for each purchase.

T I P

You might want to include additional columns in your queries to verify the results of join operations. For
example, including the Retail, Minretail, and Maxretail columns in the statement in Figure 9-19 enables
you to verify that the join operation correctly matches the book retail price with an associated gift value
range.

315

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-19 A traditional non-equality join

N O T E

If JustLee Books wanted to use the actual price a customer paid for a book, the Paideach column of the
ORDERITEMS table would be used. The Retail column in the BOOKS table represents the base retail
price of a book.

When you use a non-equality join to determine where a value falls within a range, you
must make sure no range values overlap. If you select all records from the PROMOTION
table to see the values stored in each field, you’ll notice that the Minretail value in one row
of the PROMOTION table doesn’t equal the Maxretail value in another row. If any of the
values did overlap, a customer could be returned twice in the results (and receive two gifts
for a book rather than one!). You should check output from a non-equality join to make
sure rows appearing more than once aren’t the result of overlapping values in ranges.

Non-equality Joins: Join Method
A non-equality join using the JOIN keyword has the same syntax as an equality join with the
JOIN keyword. The only difference is that an equal sign isn’t used to establish the relationship
in the ON clause. Figure 9-20 uses the JOIN keyword to list the gift for each book.

316

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that the joining condition in the ON clause is the same as the one in the WHERE
clause in Figure 9-19.

FIGURE 9-20 The JOIN method for a non-equality join

S E L F - J O I N S

Sometimes data in one column of a table has a relationship with another column in the
same table. For example, customers who refer a new customer to JustLee Books
receive a discount certificate for a future purchase. The Referred column of the
CUSTOMERS table stores the customer number of the person who referred the new
customer. If you need to determine the name of the customer who referred another
customer, you face a challenge: The CUSTOMERS table serves as the master table for
all customer information. Therefore, the Referred column in the CUSTOMERS table
relates to other rows in the same table. To retrieve all the information you need, you
must join a table to itself. In this case, you need to join the Referred and Customer#
columns of the CUSTOMERS table, as shown in Figure 9-21. This type of join is known
as a self-join.

317

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Customer 1003
(Leila Smith) has referred
two customers (Tammy
Giana and Jorge Perez)

Customer 1006
(Meshia Cruz) has

referred one customer
(Nicholas Nguyen)

FIGURE 9-21 Two columns of the same table are related

Self-joins: Traditional Method
To perform a self-join, you list the CUSTOMERS table twice in the FROM clause.
However, you must make it appear as though the query is referencing two different tables.
To do this, you assign each listing of the CUSTOMERS table a different table alias. In
Figure 9-22, the table alias “c” identifies the table containing information for the new
customer, and the table alias “r” identifies the table storing the person who referred the
new customer. Because the table aliases are different, Oracle 12c operates as though two
copies of the CUSTOMERS table exist and can examine and match up different records in
the same table while executing the query.

318

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-22 A self-join with the traditional method

In Figure 9-22’s query, the Referred column alias is used to more easily distinguish
between the customer making the referral and the customer who was referred. This output
shows that customer Leila Smith referred three customers to JustLee Books.

T I P

If an error message is returned, make sure the CUSTOMERS table is listed twice in the FROM clause,
each with a different table alias. Also, remember to precede each column in the WHERE clause with the
table alias so that there are no ambiguity errors.

Self-Joins: JOIN Method
Regardless of the method used, the concept behind a self-join is the same—to use
table aliases to make it appear that you’re joining two different tables. To see how a
self-join with the JOIN keyword works, use the same example as in the previous
section. Figure 9-23 shows a self-join query with the JOIN keyword used to accomplish
this task.

Again, the CUSTOMERS table is listed twice in the FROM clause, but each listing
has a different table alias to mimic using two different tables. The columns used to
relate the table’s two occurrences are identified in the ON clause. Keep in mind that a
USING clause can’t be used with a self-join because two different column names are
used in the join.

319

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-23 A self-join with the JOIN … ON keywords

O U T E R J O I N S

With the equality, non-equality, and self-joins you’ve used so far, a row is returned only if
a corresponding record in each table is queried. These types of joins can be categorized as
inner joins because records are listed in the results only if a match is found in each table.
In fact, the default INNER keyword can be included with the JOIN keyword to specify that
only records having a matching row in the corresponding table should be returned in the
results.

However, suppose you want a list of all customers (not just ones who’ve placed an
order) and order numbers for orders the customers have recently placed. (Recall that the
CUSTOMERS table lists all customers who have ever placed an order, but the ORDERS
table lists just the current month’s orders and unfilled orders from previous months.) An
inner join might not give you the exact results you want because some customers might
not have placed a recent order. The query in Figure 9-24 produces an equality join that
returns all order numbers stored in the ORDERS table and the name of the customer
placing the order.

320

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Partial
output
shown

FIGURE 9-24 An inner join omits nonmatching rows

Although this query identifies any customer who has placed an order stored in the
ORDERS table, it does not list customers who haven’t placed an order recently. For
example, Ryan Thompson is listed in the CUSTOMERS tables but not in Figure 9-24’s
output. Because Ryan Thompson has no matching records in the ORDERS table, he’s
omitted from the query results. You want a list of all customers, however, so you need to
change this query. To include records in the join results that exist in one table but don’t
have a matching row in the other table, you use an outer join. In essence, Oracle 12c
joins the unmatched record to a NULL record in the other table. An outer join can be
created by using the WHERE clause with an outer join operator or the OUTER JOIN
keywords.

Outer Joins: Traditional Method
To tell Oracle 12c to create NULL rows for records that don’t have a matching row,
use an outer join operator, which looks like this: (+). It’s placed in the WHERE clause
immediately after the column name from the table that’s missing the matching row and
tells Oracle to create a NULL row in that table to join with the row in the other table.

Figure 9-25 corrects the problem in the customer query from Figure 9-24. It shows a
partial list of all customers, and for those who have placed orders, it shows the
corresponding order number. Note that Ryan Thompson is now included in the results,
even though he hasn’t placed a recent order.

321

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Partial
output
shown

FIGURE 9-25 A traditional outer join with the (þ) operator

If a customer in the CUSTOMERS table hasn’t placed a recent order, the customer
isn’t listed in the ORDERS table; therefore, the ORDERS table is referred to as the
“deficient table” (that is, the table with missing data). So for this query, the outer join
operator is placed immediately after the reference to the deficient ORDERS table in the
WHERE clause.

You need to be aware of some limitations when using the traditional approach to outer
joins:

• The outer join operator can be used for only one table in the joining
condition. In other words, you can’t create NULL rows in both tables at the
same time.

• A condition that includes the outer join operator can’t use the IN or OR
operator.

Another consideration is placement of the outer join operator if the statement
involves more than a single join operation. For example, review the query in Figure 9-26
which contains two join operations. Note that each join operation includes the outer join
operator as rows would be dropped from the results due to NULL values. To compare,
remove the second outer join operator in the statement and note the results contain far
less rows. Keep in mind that each join performed will drop any nonmatching rows unless
an outer join is used.

322

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-26 Multiple joins with outer joins (partial results displayed)

In previous versions of Oracle an error would be raised if you attempted to assign the
outer join operator on the same table in more than one join operation. Review the
statement in Figure 9-27, which assigns the outer join operator to the customer table in
both join operations and is processed on an Oracle 11g database. In the past, Oracle would
have raised the “ORA-01417: a table may be outer joined to at most one other table” error
as shown in Figure 9-27. However, Oracle 12c now enables this type of statement to
process successfully as seen in Figure 9-28.

FIGURE 9-27 Assigning multiple outer joins on a single table (on previous versions of Oracle)

12c

323

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-28 Assigning multiple outer joins on a single table now allowed (partial results
displayed)

N O T E

New extensions such as CROSS APPLY and OUTER APPLY provide Oracle 12c users additional
options to complete join operations. These topics will be introduced in Chapter 13 after completing the
topics of subqueries and TOP-N analysis.

Outer Joins: JOIN Method
When creating a traditional outer join with the outer join operator, the join can be applied
to only one table—not both. However, with the JOIN keyword, you can specify which table
the join should be applied to by using a left, right, or full outer join. Left and right outer
joins specify which table the outer join should be applied to, based on the table’s location
in the join condition. For example, a left outer join instructs Oracle to keep any rows in
the table listed on the left side of the join condition, even if no matches are found with the
table listed on the right. A full outer join keeps all rows from both tables in the results; no
matter which table is deficient when matching rows. (That is, it performs a combination of
left and right outer joins.)

By default, the JOIN keyword creates an inner join. To use it to create an outer join,
you include the keyword LEFT, RIGHT, or FULL to identify the join type. You can also
include the OUTER keyword; however, using it isn’t necessary to specify an outer join.
Figure 9-29, which shows partial results, re-creates the query in Figure 9-25 by using a left

324

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

outer join. With a left outer join, if the table listed on the left side of the join has an
unmatched record, it’s matched with a NULL record and displayed in the results.

Partial
output
shown

FIGURE 9-29 Using a left outer join

As shown in Figure 9-30’s partial results, Oracle 12c interprets a right outer join to
mean the results should include any order that doesn’t have a match in the CUSTOMERS
table. (This happens only if the customer record has been deleted from the CUSTOMERS
table, but the order still exists in the ORDERS table.) Because a customer exists for every
order that has been placed recently, no NULL rows are created. However, notice that
customers who aren’t listed in the ORDERS table are no longer displayed (Thompson,
Perez, and so on) because the CUSTOMERS table is referenced in the left side of the
joining condition, and this statement is executing a right outer join.

N O T E

Recall that the FOREIGN KEY constraint on the Customer# column of the CUSTOMERS and ORDERS
table prevents deleting a customer who has an order record in the database.

325

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Partial
output
shown

FIGURE 9-30 Using a right outer join

Substituting the FULL JOIN keywords instructs Oracle 12c to return records from
either table that doesn’t have a matching record in the other table. A full join can’t be used
with the outer join operator; it can be used only with the JOIN keyword.

N O T E

When joining three or more tables, keep in mind that each join operation, by default, omits nonmatching
rows. To retain nonmatching rows, you might need an outer join operation for each join in the query.

S E T O P E R A T O R S

Set operators are used to combine the results of two (or more) SELECT statements.
Valid set operators in Oracle 12c are UNION, UNION ALL, INTERSECT, and MINUS.
When used with two SELECT statements, the UNION set operator returns the results of

326

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

both queries. However, if there are any duplicates, they are removed, and the duplicated
record is listed only once. To include duplicates in the results, use the UNION ALL set
operator. INTERSECT lists only records that are returned by both queries; the MINUS set
operator removes the second query’s results from the output if they are also found in the
first query’s results. INTERSECT and MINUS set operations produce unduplicated results.
Table 9-2 summarizes the set operators.

TABLE 9-2 List of Set Operators

Set Operator Description

UNION Returns the results of both queries and removes duplicates

UNION ALL Returns the results of both queries but includes duplicates

INTERSECT Returns only the rows included in the results of both queries

MINUS Subtracts the second query’s results if they’re also returned in the first
query’s results

N O T E

Another set operator, EXISTS, is available and is discussed in Chapter 12.

Suppose you want a list of all author IDs with books in the Children or Family Life
categories. As mentioned, the UNION set operator displays all rows returned by both
queries. In Figure 9-31, authors with books in the Family Life category are retrieved in
the first SELECT, and authors with books in the Children category are retrieved in the
second SELECT. Because the UNION set operator combines the two SELECT statements,
each book is listed only once, even if an author ID appears several times in the ORDERS
table. For example, author R100 has a book in each category but is listed only once in the
results.

327

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-31 Producing an unduplicated combined list with the UNION set operator

N O T E

The UNION set operator was used to create full outer joins before the ANSI full outer join capability was
available.

Unlike the UNION set operator, the UNION ALL set operator displays every row
returned by the combined SELECT statements. In Figure 9-32’s partial results, the query
in Figure 9-28 is modified to use UNION ALL instead of UNION. As you can see, the
author ID R100 is now listed twice, indicating that two rows total have been returned for
this author. The UNION ALL set operator doesn’t suppress duplicate rows, so author IDs
are displayed more than once for authors who have published multiple books.

328

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-32 Producing a combined list with duplication by using the UNION ALL set operator

The output in Figure 9-32 can be improved with sorting, which can be added to
set operations by including an ORDER BY clause at the end, as shown in Figure 9-33.
Notice that the column in the ORDER BY clause, Authorid, isn’t qualified with a table
reference. If this column is qualified, an error occurs because the sorting action is
applied to the set operation’s results and no longer refers to a specific SELECT
statement in the query.

329

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-33 Add sorting to a set operation

So far, the UNION examples have included only queries involving a single column in the
SELECT clause, but set operations can involve multiple-column queries. To see how this
works, compare the data in the PUBLISHER and PUBLISHER3 tables, listed in Figures 9-34
and 9-35. First, the two tables use different column names for the publisher ID values: PubiD
and ID. Second, the data rows in the two tables differ. For example, the PUBLISHER3 table
contains two rows that don’t exist in the PUBLISHER table (ID 6 and 7), one row that’s the
same in the PUBLISHER table (ID 2), and one row that exists in each table but contains a
different name value to represent American Publishing (ID 3).

FIGURE 9-34 The PUBLISHER table

330

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 9-35 The PUBLISHER3 table

Using these tables, test a UNION set operation that includes two columns, as shown in
Figure 9-36. The results include an unduplicated combination of all publishers in both
tables. However, two rows are listed for the publisher ID 3 because the two columns
included in the UNION don’t match. The ID number is the same in both rows; however,
a different name is recorded in each row, so they aren’t considered matching rows that
should count as duplicates.

FIGURE 9-36 Multiple-column UNION set operation

331

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Keep in mind some guidelines for multiple-column set operations:

• All columns are included to perform the set comparison.
• Each query must contain the same number of columns, which are compared

positionally.
• Column names can be different in the queries.

The UNION set operation in Figure 9-36 ran successfully with different column names
in position 1 of the SELECT clauses; this position references the publisher ID information.
The results display the first column name provided; therefore, you see the column title
Pubid in the output. If you want to sort on the first column, you could use Pubid or 1 in
the ORDER BY clause. (Recall from Chapter 8 that using numbers in the ORDER BY
clause simply references column position.)

You might not always need to combine data rows in queries. The query in Figure 9-37
contains two SELECT statements joined with the INTERSECT set operator. The first
SELECT statement asks for all customer numbers in the CUSTOMERS table—basically,
a list of all customers. The second SELECT statement lists all customer numbers for
customers who have placed an order recently. By using the INTERSECT set operator to
combine the two SELECT statements, you instruct Oracle 12c to list all customers who
have placed an order recently and who exist in the CUSTOMERS table. In other words,
only customers who are retrieved in both SELECTS should be in the results.

FIGURE 9-37 Identify overlapping values with the INTERSECT set operator

332

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The query shown in Figure 9-38 requests a list of customer numbers for customers
who are stored in the CUSTOMERS table but haven’t placed an order recently. To do this,
you use the MINUS set operator to remove customer numbers returned by the second
SELECT statement (customers in the ORDERS table) from the results of the first SELECT
statement (customers in the CUSTOMERS table).

FIGURE 9-38 Subtract result sets with the MINUS set operator

In response to the first SELECT statement, 20 customer numbers are returned;
however, only 14 of these customers have placed orders. Because you used the MINUS
set operator, the 14 customers who placed orders are deleted from the results. As you
can see in the output, six customers remain. They are the ones who haven’t placed an
order recently, meaning they’re listed in the CUSTOMERS table but not in the
ORDERS table.

333

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• Data stored in multiple tables for a single entity can be linked by using joins.
• A Cartesian join between two tables returns every possible combination of rows

from the tables. A Cartesian join can be produced by not including a join operation
in the query or by using a CROSS JOIN.

• Broadly speaking, a join can be an inner join, in which the only records returned
have a matching record in all tables, or an outer join, in which records can be
returned regardless of whether there’s a matching record in the join.

• Inner joins are categorized as equality, non-equality, or self-joins.
• An equality join is created when data joining records from two different tables is an exact

match (that is, an equality condition creates the relationship). The traditional approach
uses an equal sign as the comparison operator in the WHERE clause. The JOIN
approach can use the NATURAL JOIN, JOIN… USING, or JOIN… ON keywords.

• Columns that exist in more than one table in a query must be qualified by the table
name when a traditional join is used.

• Columns used to perform an ANSI JOIN can’t be qualified with a table name.
• The NATURAL JOIN keywords don’t require a condition to establish the

relationship between two tables. However, a common column must exist. Column
qualifiers can’t be used with the NATURAL JOIN keywords.

• The JOIN … USING approach is similar to the NATURAL JOIN approach, except
the common column is specified in the USING clause. A condition can’t be
included in the USING clause to indicate how the tables are related. In addition,
column qualifiers can’t be used for the common column specified in the USING
clause.

• The JOIN … ON approach joins tables based on a specified condition. The JOIN
keyword in the FROM clause indicates the tables to be joined, and the ON clause
indicates how the two tables are related. This approach must be used if the tables
being joined don’t have a common column with the same name in each table.

• A non-equality join establishes a relationship based on anything other than an
equal condition. Range values used with non-equality joins must be mutually
exclusive.

• Self-joins are used when a table must be joined to itself to retrieve the data you
need. Table aliases are required in the FROM clause to perform a self-join.

• An outer join is created when records need to be included in the results without
having corresponding records in the join tables. These records are matched with
NULL records so that they’re included in the output.

• When using the WHERE clause to create an outer join, records from only one
table can be matched to a NULL record. The outer join operator (+) is placed after
the “deficient” table (the one that doesn’t contain rows matching existing rows in
the other table).

• With the JOIN method for outer joins, you can add the LEFT, RIGHT, or FULL
keywords. A left outer join includes all records from the table listed on the left
side of the join, even if no match is found with the other table in the join operation.
A full outer join includes all records from both tables, even if no corresponding
record in the other table is found.

334

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• Set operators, such as UNION, UNION ALL, INTERSECT, and MINUS, can be
used to combine the results of multiple queries.

Chapter 9 Syntax Summary

The following table summarizes the syntax and information you have learned in this chapter.
You can use the table as a study guide and reference.

Syntax Guide

Element Description Example

WHERE clause In the traditional approach, the
WHERE clause indicates which
columns should be used to join
tables.

SELECT columnname [,...]
FROM tablename1,
tablename2

WHERE tablename1.columnname
<comparison operator>
tablename2.columnname;

NATURAL JOIN
keywords

These keywords are used in the
FROM clause to join tables con-
taining a common column with
the same name and definition.

SELECT columnname [,...]
FROM tablename1
NATURAL JOIN
tablename2;

JOIN ... USING
keywords

The JOIN keyword is used in the
FROM clause; combined with the
USING clause, it identifies the
common column used to join the
tables. Normally, it’s used if the
tables have more than one com-
monly named column and only
one is being used for the join.

SELECT columnname [,...]
FROM tablename1
JOIN tablename2
USING (columnname);

JOIN ... ON
keywords

The JOIN keyword is used in the
FROM clause. The ON clause
identifies the column used to join
the tables.

SELECT columnname [,...]
FROM tablename1
JOIN tablename2
ON tablename1.columnname

<comparison operator>
tablename2.
columnname;

OUTER JOIN key-
words Can be a
RIGHT, LEFT, or
FULL outer join

Indicates that at least one of the
tables doesn’t have a matching
row in the other table.

SELECT columnname [,...]
FROM tablename1
[RIGHT|LEFT|FULL] OUTER
JOIN tablename2
ON tablename1.
columnname =
tablename2.columnname;

335

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Type of Join Traditional Method JOIN Method

Cartesian Join
Also known as a Carte-
sian product or cross
join; matches each
record in one table with
each record in another
table

Example
SELECT title, name
FROM books, publisher;

Use keywords CROSS JOIN.
Example
SELECT title, name
FROM books CROSS JOIN publisher;

Equality Join
Also known as an equi-
join, an inner join, or a
simple join. Joins data in
tables having equivalent
data in a common col-
umn. With the tradi-
tional approach, you
must qualify common
columns with a table
name.

Use the keyword WHERE.
Example
SELECT title,

books.pubid, name
FROM publisher, books
WHERE publisher.pubid =
books.pubid AND
publisher.pubid = 4;

Use keywords NATURAL JOIN or JOIN …

USING to join tables having a commonly
defined field.
Use keywords JOIN … ON when tables
don’t have a commonly defined field. The
column qualifier ON tells Oracle 12c how
tables are related.
Examples
SELECT title, pubid, name
FROM publisher
NATURAL JOIN books;

SELECT title, pubid, name
FROM publisher JOIN books
USING (pubid);

SELECT title, name
FROM books b
JOIN publisher p
ON b.pubid = p.pubid;

Non-Equality Join
Joins tables when there
are no equivalent rows in
the tables to be joined.
Often used to match
values in one column
with a range of values in
another column. Can use
any comparison operator
except the equal sign (¼).

Use the keyword WHERE.
Example
SELECT title, gift
FROM books, promotion
WHERE retail
BETWEEN minretail AND
maxretail;

Use keywords JOIN … ON and the same
syntax as the JOIN method’s equality join.
Example
SELECT title, gift
FROM books JOIN promotion
ON retail BETWEEN
minretail AND
maxretail;

Self-Join
Joins a table to itself so
that columns in the table
can be joined. Must cre-
ate table aliases.

Use the keyword WHERE.
Example
SELECT r.firstname,
r.lastname, c.lastname
"Referred"

FROM customers c,
customers r

WHERE c.referred =
r.customers#;

Use the keywords JOIN … ON.
Example
SELECT r.firstname,
r.lastname, c.lastname
"Referred"

FROM customers c
JOIN customers r
ON c.referred =
r.customers#;

336

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. Explain the difference between an inner join and an outer join.

2. How many rows are returned in a Cartesian join between one table having 5 records and a
second table having 10 records?

3. Describe problems you might encounter when using the NATURAL JOIN keywords to
perform join operations.

4. Why are the NATURAL JOIN keywords not an option for producing a self-join? (Hint: Think
about what happens if you use a table alias with the NATURAL JOIN keywords.)

5. What’s the purpose of a column qualifier? When are you required to use one?

6. In an OUTER JOIN query, the outer join operator (+) is placed after which table?

7. What’s the difference between the UNION and UNION ALL set operators?

8. How many join conditions are needed for a query that joins five tables?

9. What’s the difference between an equality and a non-equality join?

10. What are the differences between the JOIN … USING and JOIN … ON approaches for
joining tables?

Syntax Guide (continued)

Type of Join Traditional Method JOIN Method

Outer Join
Includes a table’s
records in the output
when there’s no
matching record in
the other table.

Use the keyword WHERE; use
the outer join operator (+) to
create NULL rows in the
deficient table for records that
don’t have a matching row.
Example
SELECT lastname,
firstname, order#

FROM customers c,
orders o

WHERE c.customer# =
o.customer#(+)

ORDER BY c.customer#;

Include the keyword LEFT, RIGHT, or
FULL with the OUTER JOIN keywords.
Example
SELECT lastname, firstname,
order#

FROM customers c LEFT OUTER
JOIN orders o
USING (customer#)
ORDER BY c.customer#;

Set Operators
These operators include
UNION, UNION ALL,
INTERSECT, and
MINUS.

Combine results of multiple
SELECT statements.

SELECT customer#
FROM customers

UNION
SELECT customer#
FROM orders;

337

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multiple Choice

To answer the following questions, refer to the tables in the JustLee Books database.

1. Which of the following queries creates a Cartesian join?

a. SELECT title, authorid

FROM books, bookauthor;

b. SELECT title, name

FROM books CROSS JOIN publisher;

c. SELECT title, gift

FROM books NATURAL JOIN promotion;

d. all of the above

2. Which of the following operators is not allowed in an outer join?

a. AND

b. ¼
c. OR

d. >

3. Which of the following queries contains an equality join?

a. SELECT title, authorid

FROM books, bookauthor

WHERE books.isbn ¼ bookauthor.isbn

AND retail > 20;

b. SELECT title, name

FROM books CROSS JOIN publisher;

c. SELECT title, gift

FROM books, promotion

WHERE retail >¼ minretail

AND retail <¼ maxretail;

d. none of the above

4. Which of the following queries contains a non-equality join?

a. SELECT title, authorid

FROM books, bookauthor

WHERE books.isbn ¼ bookauthor.isbn

AND retail > 20;

b. SELECT title, name

FROM books JOIN publisher

USING (pubid);

338

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. SELECT title, gift

FROM books, promotion

WHERE retail >¼ minretail

AND retail <¼ maxretail;

d. none of the above

5. The following SQL statement contains which type of join?

SELECT title, order#, quantity

FROM books FULL JOIN orderitems

ON books.isbn ¼ orderitems.isbn;

a. equality

b. self-join

c. non-equality

d. outer join

6. Which of the following queries is valid?

a. SELECT b.title, b.retail, o.quantity

FROM books b NATURAL JOIN orders od

NATURAL JOIN orderitems o

WHERE od.order# ¼ 1005;

b. SELECT b.title, b.retail, o.quantity

FROM books b, orders od, orderitems o

WHERE orders.order# ¼ orderitems.order#

AND orderitems.isbn ¼ books.isbn

AND od.order# ¼ 1005;

c. SELECT b.title, b.retail, o.quantity

FROM books b, orderitems o

WHERE o.isbn ¼ b.isbn

AND o.order# ¼ 1005;

d. none of the above

7. Given the following query:

SELECT zip, order#

FROM customers NATURAL JOIN orders;

Which of the following queries is equivalent?

a. SELECT zip, order#

FROM customers JOIN orders

WHERE customers.customer# ¼ orders.customer#;

339

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. SELECT zip, order#

FROM customers, orders

WHERE customers.customer# ¼ orders.customer#;

c. SELECT zip, order#

FROM customers, orders

WHERE customers.customer# ¼ orders.customer# (+);

d. none of the above

8. Which line in the following SQL statement raises an error?

1. SELECT name, title

2. FROM books NATURAL JOIN publisher

3. WHERE category ¼ 'FITNESS'

4. OR

5. books.pubid ¼ 4;

a. line 1

b. line 2

c. line 3

d. line 4

e. line 5

9. Given the following query:

SELECT lastname, firstname, order#

FROM customers LEFT OUTER JOIN orders

USING (customer#)

ORDER BY customer#;

Which of the following queries returns the same results?

a. SELECT lastname, firstname, order#

FROM customers c OUTER JOIN orders o

ON c.customer# ¼ o.customer#

ORDER BY c.customer#;

b. SELECT lastname, firstname, order#

FROM orders o RIGHT OUTER JOIN customers c

ON c.customer# ¼ o.customer#

ORDER BY c.customer#

c. SELECT lastname, firstname, order#

FROM customers c, orders o

WHERE c.customer# ¼ o.customer# (+)

ORDER BY c.customer#;

d. none of the above

340

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Given the following query:

SELECT DISTINCT zip, category

FROM customers NATURAL JOIN orders NATURAL JOIN orderitems

NATURAL JOIN books;

Which of the following queries is equivalent?

a. SELECT zip FROM customers

UNION

SELECT category FROM books;

b. SELECT DISTINCT zip, category

FROM customers c, orders o, orderitems oi, books b

WHERE c.customer# ¼ o.customer# AND o.order# ¼ oi.order#

AND oi.isbn ¼ b.isbn;

c. SELECT DISTINCT zip, category

FROM customers c JOIN orders o

JOIN orderitems oi JOIN books b

ON c.customer# ¼ o.customer#

AND o.order# ¼ oi.order#

AND oi.isbn ¼ b.isbn;

d. all of the above

e. none of the above

11. Which line in the following SQL statement raises an error?

1. SELECT name, title

2. FROM books JOIN publisher

3. WHERE books.pubid ¼ publisher.pubid

4. AND

5. cost < 45.95

a. line 1

b. line 2

c. line 3

d. line 4

e. line 5

12. Given the following query:

SELECT title, gift

FROM books CROSS JOIN promotion;

Which of the following queries is equivalent?

a. SELECT title, gift

FROM books NATURAL JOIN promotion;

341

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. SELECT title

FROM books INTERSECT

SELECT gift

FROM promotion;

c. SELECT title

FROM books UNION ALL

SELECT gift

FROM promotion;

d. all of the above

13. If the CUSTOMERS table contains seven records and the ORDERS table has eight
records, how many records does the following query produce?

SELECT*

FROM customers CROSS JOIN orders;

a. 0

b. 8

c. 7

d. 15

e. 56

14. Which of the following SQL statements is not valid?

a. SELECT b.isbn, p.name

FROM books b NATURAL JOIN publisher p;

b. SELECT isbn, name

FROM books b, publisher p

WHERE b.pubid ¼ p.pubid;

c. SELECT isbn, name

FROM books b JOIN publisher p

ON b.pubid ¼ p.pubid;

d. SELECT isbn, name

FROM books JOIN publisher

USING (pubid);

e. None—all the above are valid SQL statements.

15. Which of the following lists all books published by the publisher named Printing Is Us?

a. SELECT title

FROM books NATURAL JOIN publisher

WHERE name ¼ 'PRINTING IS US';

342

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. SELECT title

FROM books, publisher

WHERE pubname ¼ 1;

c. SELECT *

FROM books b, publisher p

JOIN tables ON b.pubid ¼ p.pubid

WHERE name ¼ 'PRINTING IS US';

d. none of the above

16. Which of the following SQL statements is not valid?

a. SELECT isbn

FROM books

MINUS

SELECT isbn

FROM orderitems;

b. SELECT isbn, name

FROM books, publisher

WHERE books.pubid (+) ¼ publisher.pubid (+);

c. SELECT title, name

FROM books NATURAL JOIN publisher

d. All the above SQL statements are valid.

17. Which of the following statements about an outer join between two tables is true?

a. If the relationship between the tables is established with a WHERE clause, both tables
can include the outer join operator.

b. To include unmatched records in the results, the record is paired with a NULL record in
the deficient table.

c. The RIGHT, LEFT, and FULL keywords are equivalent.

d. all of the above

e. none of the above

18. Which line in the following SQL statement raises an error?

1. SELECT name, title

2. FROM books b, publisher p

3. WHERE books.pubid ¼ publisher.pubid

4. AND

5. (retail > 25 OR retail-cost > 18.95);

a. line 1

b. line 3

c. line 4

d. line 5

343

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. What is the maximum number of characters allowed in a table alias?

a. 10

b. 30

c. 255

d. 256

20. Which of the following SQL statements is valid?

a. SELECT books.title, orderitems.quantity

FROM books b, orderitems o

WHERE b.isbn ¼ o.ibsn;

b. SELECT title, quantity

FROM books b JOIN orderitems o;

c. SELECT books.title, orderitems.quantity

FROM books JOIN orderitems

ON books.isbn ¼ orderitems.isbn;

d. none of the above

Hands-On Assignments

To perform these assignments, refer to the tables in the JustLee Books database.
Generate and test two SQL queries for each of the following tasks: a) the SQL statement

needed to perform the stated task with the traditional approach, and b) the SQL statement
needed to perform the stated task with the JOIN keyword. Apply table aliases in all queries.

1. Create a list that displays the title of each book and the name and phone number of the
contact at the publisher’s office for reordering each book.

2. Determine which orders haven’t yet shipped and the name of the customer who placed the
order. Sort the results by the date on which the order was placed.

3. Produce a list of all customers who live in the state of Florida and have ordered books
about computers.

4. Determine which books customer Jake Lucas has purchased. Perform the search using the
customer name, not the customer number. If he has purchased multiple copies of the same
book, unduplicate the results.

5. Determine the profit of each book sold to Jake Lucas, using the actual price the customer
paid (not the book’s regular retail price). Sort the results by order date. If more than one
book was ordered, sort the results by profit amount in descending order. Perform the
search using the customer name, not the customer number.

6. Which books were written by an author with the last name Adams? Perform the search
using the author name.

7. What gift will a customer who orders the book Shortest Poems receive? Use the actual
book retail value to determine the gift.

344

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Identify the authors of the books Becca Nelson ordered. Perform the search using the
customer name.

9. Display a list of all books in the BOOKS table. If a book has been ordered by a customer,
also list the corresponding order number and the state in which the customer resides.

10. An EMPLOYEES table was added to the JustLee Books database to track employee
information. Display a list of each employee’s name, job title, and manager’s name. Use
column aliases to clearly identify employee and manager name values. Include all
employees in the list and sort by manager name.

Advanced Challenge

To perform this activity, refer to the tables in the JustLee Books database.
The Marketing Department of JustLee Books is preparing for its annual sales promotion.

Each customer who places an order during the promotion will receive a free gift with each book
purchased. Each gift will be based on the book’s retail price. JustLee Books also participates in
co-op advertising programs with certain publishers. If the publisher’s name is included in
advertisements, JustLee Books is reimbursed a certain percentage of the advertisement costs.
To determine the projected costs of this year’s sales promotion, the Marketing Department
needs the publisher’s name, profit amount, and free gift description for each book in the JustLee
Books inventory.

Also, the Marketing Department is analyzing books that don’t sell. A list of ISBNs for all
books with no sales recorded is needed. Use a set operation to complete this task.

Create a document that includes a synopsis of these requests, the necessary SQL
statements, and the output requested by the Marketing Department.

Case Study: City Jail

Note: Use the City Jail database created with the CityJail_8.sql script that you ran for the
Chapter 8 case study.

The following list reflects the current data requests from city managers. Provide the SQL
statements that satisfy the requests. For each request, include one solution using the traditional
method and one using an ANSI JOIN statement. Test the statements and show execution
results.

1. List all criminals along with the crime charges filed. The report needs to include the criminal
ID, name, crime code, and fine amount.

2. List all criminals along with crime status and appeal status (if applicable). The reports need
to include the criminal ID, name, crime classification, date charged, appeal filing date, and
appeal status. Show all criminals, regardless of whether they have filed an appeal.

3. List all criminals along with crime information. The report needs to include the criminal ID,
name, crime classification, date charged, crime code, and fine amount. Include only crimes
classified as “Other.” Sort the list by criminal ID and date charged.

4. Create an alphabetical list of all criminals, including criminal ID, name, violent offender
status, parole status, and any known aliases.

5. A table named Prob_Contact contains the required frequency of contact with a probation
officer, based on the length of the probation period (the number of days assigned to

345

Joining Data from Multiple Tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

probation). Review the data in this table, which indicates ranges for the number of days and
applicable contact frequencies. Create a list containing the name of each criminal who has
been assigned a probation period, which is indicated by the sentence type. The list should
contain the criminal name, probation start date, probation end date, and required frequency
of contact. Sort the list by criminal name and probation start date.

6. A column named Mgr_ID has been added to the Prob_Officers table and contains the ID
number of the probation supervisor for each officer. Produce a list showing each probation
officer’s name and his or her supervisor’s name. Sort the list alphabetically by probation
officer name.

346

Chapter 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R10
SELECTED SINGLE-ROW
FUNCTIONS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Use the UPPER, LOWER, and INITCAP functions to change the letter case of field values
and character strings

• Manipulate character substrings with the SUBSTR and INSTR function

• Nest functions inside other functions

• Determine the length of a character string with the LENGTH function

• Use the LPAD and RPAD functions to ensure that a string is a certain width

• Use the LTRIM and RTRIM functions to remove specific character strings

• Substitute character string values with the REPLACE and TRANSLATE functions

• Combine character strings with the CONCAT function

• Round and truncate numeric and date data with the ROUND and TRUNC functions

• Return only the remainder of a division operation with the MOD function

• Use the ABS function to set numeric values as positive

• Use the POWER function to raise a number to a specified power

• Calculate the number of months between two dates with the MONTHS_BETWEEN function

• Manipulate date data with the ADD_MONTHS, NEXT_DAY, LAST_DAY, and TO_DATE
functions

• Differentiate between CURRENT_DATE and SYSDATE values

• Extend pattern-matching capabilities with regular expressions

• Identify and correct problems in calculations involving NULL values by using the NVL function

• Manipulate NULL values with the NVL2 and NULLIF functions

• Display dates and numbers in a specific format with the TO_CHAR function

• Perform condition processing similar to an IF statement with the DECODE function and CASE
expression

• Use the SOUNDEX function to identify character phonetics

• Convert string values to numeric with the TO_NUMBER function

• Use the DUAL table to test functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

In this chapter, you learn about single-row SQL functions. A function is a predefined
block of code that accepts one or more arguments—values listed inside parentheses—and
then returns a single value as output. The nature of an argument depends on the syntax of
the function being executed. Single-row functions return one row of results for each
record processed. By contrast, multiple-row functions return only one result per group or
category of rows processed, such as counting the number of books published by each
publisher. (Multiple-row functions are discussed in Chapter 11.)

Single-row functions range from converting letter case to calculating the number of
months between two dates. The functions in this chapter have been grouped into
character functions (case conversion and character manipulation functions), number
functions, date functions, regular expressions, and other functions. Table 10-1 gives you
an overview of these functions.

TABLE 10-1 Functions Covered in This Chapter

Type of Function Functions

Case conversion functions UPPER, LOWER, INITCAP

Character manipulation
functions

SUBSTR, INSTR, LENGTH, LPAD/RPAD, LTRIM/
RTRIM, REPLACE, TRANSLATE, CONCAT

Numeric functions ROUND, TRUNC, MOD, ABS, POWER

Date functions MONTHS_BETWEEN, ADD_MONTHS, NEXT_DAY,
LAST_DAY, TO_DATE, ROUND, TRUNC,
CURRENT_DATE

Regular expressions REGEXP_LIKE, REGEXP_SUBSTR

Other functions NVL, NVL2, NULLIF, TO_CHAR, DECODE, CASE
expression, SOUNDEX, TO_NUMBER

Oracle 12c supports a wide variety of single-row functions. This chapter covers the
most commonly used ones. However, you should review the Functions chapter in Oracle’s
SQL Reference to become familiar with the available functions. You can find all reference
books in the documentation area of the Oracle Technology Network Web site.

D A T A B A S E P R E P A R A T I O N

Before attempting to work through the examples in this chapter, make sure you have completed the
following tasks. First, if you haven’t already run the JLDB_Build_8.sql script from Chapter 8, execute it to
rebuild the JustLee Books database. Second, run the JLDB_Build_10.sql file in the Chapter 10 folder of
your student data files to make the necessary additions to the JustLee Books database.

348

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C A S E C O N V E R S I O N F U N C T I O N S

You can use character functions to change the case of characters (for example, to
convert uppercase letters to lowercase letters) or to manipulate characters (such as
substituting one character for another). Although most database administrators rarely
need to use character functions, application developers often use them to create user-
friendly database interfaces.

Case conversion functions alter the case of a character string. Used in a query, the
case conversion is only temporary—it changes how Oracle 12c views data while executing
a query, but it doesn’t affect how data is stored. A case conversion function could be used
in an INSERT statement to set the case of a stored value, for example. The case
conversion functions Oracle 12c supports are LOWER, UPPER, and INITCAP.

The LOWER Function
The data in the JustLee Books database is stored in uppercase letters. However, when users
perform data searches, they might enter character strings for search conditions in lowercase
letters if they don’t know the data is in uppercase letters. If this happens, Oracle doesn’t
return any rows because the data is in uppercase letters. You can solve this problem in
several ways. One simple method is using the LOWER function, which converts character
strings to lowercase letters. You can use the LOWER function to convert a table’s data to
lowercase letters temporarily during query execution, as shown in Figure 10-1.

FIGURE 10-1 LOWER function in the WHERE clause

In Figure 10-1, you’re searching for a customer with the last name Nelson. The syntax
of the LOWER function is LOWER(c), where c is the field or character string to convert. In
this case, you need data in the Lastname field converted to lowercase letters during the
search. Therefore, the Lastname field is inserted between the parentheses after the
function name.

Notice that the query results in Figure 10-1 are still in uppercase letters. Because the
LOWER function isn’t used in the SELECT clause, the first and last name are displayed in
the same case in which they’re stored. If you want data displayed in lowercase letters,
simply include the LOWER function in the SELECT clause for each field to convert. Figure
10-2 shows the LOWER function in the SELECT and WHERE clauses.

349

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-2 LOWER function in the SELECT and WHERE clauses

In Figure 10-2, the LOWER function in the SELECT clause makes Oracle display the
query results in lowercase letters. However, you must still include the LOWER function in
the WHERE clause because the character string 'nelson' is, for comparison purposes,
still entered in its lowercase form. In other words, when a function is used in a SELECT
clause, it affects only how data is displayed in the results. By contrast, when a function is
used in a WHERE clause, it’s used only during the specified comparison operation.

Because the columns contain the results of the LOWER function, the column headings
show the actual function used in the SELECT clause. Oracle 12c includes the function in
the column heading to indicate that the data was manipulated or altered before being
listed in the output. If you don’t want the function name included in the column heading,
simply add a column alias after the function in the SELECT clause, and the alias is
displayed as the column header in the results.

The UPPER Function
The UPPER function converts characters into uppercase letters. This function can be
used in the same way as the LOWER function to affect the display of characters (when
used in a SELECT clause) and to modify the character case for a search condition
(when used in a WHERE clause). The syntax of the UPPER function is UPPER(c), where
c is the character string or field to convert into uppercase letters.

As discussed in Chapter 5, substitution variables allow using user input to complete an
SQL statement. If the user input provides a value to use in a search condition, the UPPER
function could be used to make sure this value is converted to uppercase letters before
performing the comparison in the search condition. For example, the query shown in
Figure 10-3 requests providing a last name value at execution. The UPPER function is
included in the condition of the WHERE clause to instruct Oracle 12c to convert the
user-entered character string nelson to uppercase letters while executing the
SELECT query.

350

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-3 Using the UPPER function to manage user input

Converting the single search condition to the same case as data stored in the table is
more efficient for the following reasons:

• You don’t need to be concerned with whether the user knows which case to
use when entering search strings.

• Oracle 12c doesn’t need to convert the case of each row value in the field
during query execution, which reduces the processing burden on the Oracle
server.

The INITCAP Function
Although having table data and search criteria in the same case enables you to find
records, the output might not look appealing. Generally, it’s easier for people to read data
in mixed-case letters rather than all uppercase or lowercase letters. Oracle 12c includes
the INITCAP function to convert character strings to mixed case, with each word
beginning with a capital letter—for example, Great Mushroom Recipes. The syntax of the
INITCAP function is INITCAP(c), where c represents the field or character string to
convert. The INITCAP function converts the first (INITial) letter of each word in the
character string to uppercase (CAPital letter) and the remaining characters into lowercase,
as shown in Figure 10-4.

351

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-4 INITCAP function in a SELECT clause modifies the display

In this query, the INITCAP function in the SELECT clause makes Oracle convert data
in the Firstname and Lastname columns to mixed case. Although the INITCAP function
can also be used in a WHERE clause, doing so is rare because not all users are consistent
in the case they use for entering data. Also, notice that column aliases are used for the
headings of the Firstname and Lastname columns in the output.

C H A R A C T E R M A N I P U L A T I O N F U N C T I O N S

Although most data that JustLee Books management needs is already stored in the correct
form in the database, data might need to be manipulated to yield a different query output.
At times you might need to determine a string’s length, extract portions of a string, or
reposition a string by using character manipulation functions. For example, to identify
the state distribution center for an address, you need to extract the first three digits from
the zip code. The following sections explain some commonly used manipulation functions.

The SUBSTR Function
You can use the SUBSTR function to return a substring (a portion of a string). Many
organizations code data values such as inventory, benefits information, and general ledger
accounts according to some type of coding scheme. For example, a benefits code might
contain three characters, with the second character indicating the health plan the
employee has selected. Similarly, the area code of a customer’s telephone number
indicates a region in a state.

One way to determine where a customer resides is to look at the first three numbers of
the zip code. The United States Postal Service assigns the first three digits of the zip code to
a geographical distribution area in each state. The Marketing Department can use this data to
determine where to target certain promotional campaigns. For this purpose, the SUBSTR
function can be used to extract the first three digits of the zip code stored for each customer.

The syntax of this function is SUBSTR(c, p, 1), where c represents the character
string, p represents the beginning character position for the extraction, and 1 represents
the length of the string to return in the query results. As shown in Figure 10-5, the
SELECT clause includes the DISTINCT keyword to eliminate duplication in the results.
The arguments (zip, 1, 3) instruct Oracle to read the value in the Zip field, starting at

352

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the first character position, and extract three characters as the substring. Because the
function is used in the SELECT clause, the extracted value is simply displayed.

FIGURE 10-5 SUBSTR function extracting part of the zip code

N O T E

If you’re using SQL*PIus, the column header in Figure 10-5 might be truncated to show only a portion of
the SUBSTR function. The header is truncated to the default width setting for displaying data, but you
can modify this setting to display the entire header. Chapter 14 (in the online materials) covers
formatting column widths in SQL*Plus.

The SUBSTR function can also extract substrings from the end of data stored in the
field if negative position numbers are used. For example, if you enter -3 to indicate the
beginning position, Oracle counts backward three positions from the end of the field and
starts there to extract the substring. If you enter (zip, -3, 2) as arguments, the third
and fourth digits of the zip code are returned.

353

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that in Figure 10-6, the first column of the results displays the entire zip code
for each unique zip code stored in the CUSTOMERS table. The second column contains
just the first three digits of the zip code, and the third column contains just the third and
fourth digits of the zip code, as requested by the SUBSTR(zip, -3, 2) portion of the
SELECT clause. The WHERE clause uses the SUBSTR function to filter the results, based
on the value of the zip code’s third and fourth digits.

FIGURE 10-6 Comparison of SUBSTR arguments

The INSTR Function
The INSTR (instring) function searches a string for a specified set of characters or a
substring, and then returns a numeric value representing the first character position in
which the substring is found. If the substring doesn’t exist in the string value, a 0 (zero) is
returned. Two arguments must be provided to the INSTR function: the string value to
search and the characters or substring (enclosed in single quotes) to locate.

Two optional arguments are also available: start position, indicating on which
character of the string value the search should begin, and occurrence, which is the
instance of the search value to locate (that is, first occurrence, second occurrence, and
so on). By default, the search begins at the beginning of the string value, and the position
of the first occurrence is located. Figure 10-7 shows using different arguments in the
INSTR function.

354

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-7 Comparison of INSTR arguments

The INSTR function is often used with the SUBSTR function. For example, in Figure
10-7, the INSTR function identifies the location of commas in the Name field. However,
what if you want to extract the first and last name from the Name field? In this case, you
can nest INSTR and SUBSTR to perform this task. Nesting simply means using one
function as an argument inside another function. Figure 10-8 shows nesting these
functions in a SELECT clause to extract the first name from the Name field.

Full string to read

SUBSTR(name,INSTR(name,',')+1,INSTR(name,',',1,2)-INSTR(name,',')-1) First

Start position of
SUBSTR read.
Use the position of
the first occurrence
of comma in the
name string plus 1.

Number of characters to read for the
SUBSTR value. Use position of
second occurrence of comma in the
name string minus the first occurrence
of comma. The last -1 is used to
prevent a comma from being included
in the SUBSTR value.

FIGURE 10-8 INSTR nested inside SUBSTR

Any single-row function can be nested inside other single-row functions. When nesting
functions, you should remember the following important rules:

• All arguments required for each function must be provided.
• Every opening parenthesis must have a corresponding closing parenthesis.
• The nested, or inner, function is evaluated first. The inner function’s result is

then passed to the outer function, and the outer function is executed.

355

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-9 shows a SELECT statement that uses nested functions to extract the first
and last name from the Name field.

FIGURE 10-9 Using nested functions in a query

The LENGTH Function
When you plan the width of table columns, design text areas for forms, or determine the size
of mailing labels, you might ask “What’s the maximum number of characters that will be
entered on this line?” For example, you’re creating mailing labels and need labels wide
enough to accommodate the longest mailing address. To determine the number of
characters in a string, you can use the LENGTH function, shown in Figure 10-10. The syntax
of the LENGTH function is LENGTH(c), where c represents the character string to analyze.

FIGURE 10-10 Checking data width with the LENGTH function

356

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The (address) argument in Figure 10-10 determines the number of characters, or
the length of data, in the Address field for each customer. The DISTINCT keyword
eliminates duplicate values in the results. The sort in the ORDER BY clause places the
highest length value at the top of the results. As the output shows, a mailing label
accommodating at least 20 characters is required to send mail to current customers.

N O T E

Using the LENGTH function on a column with a CHAR datatype always returns the column’s total width
or size.

T I P

The LENGTH function is also used to determine whether a column might need resizing.

The LPAD and RPAD Functions
Have you ever received a check with the dollar amount preceded by a series of asterisks?
Many companies fill in blank spaces on checks and forms with symbols to make it difficult
for someone to alter the numbers. The LPAD function can be used to pad, or fill in, the
area to the left of a character string with a specific character—or even a blank space.

The syntax of the LPAD function is LPAD(c, l, s), where c represents the character
string to pad, 1 represents the length of the character string after padding, and s
represents the symbol or character (enclosed in single quotes) to use as padding, as shown
in Figure 10-11.

FIGURE 10-11 Using the LPAD function

357

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

If you’re using SQL*Plus, you need to set output to text format rather than the default HTML format.
Click Preferences, System Configuration, Script Formatting, and set the Preformatted Output option
to On.

In Figure 10-11, the LPAD function is used twice on the Firstname column, each time
with different padding characters. The first LPAD function contains the arguments
(firstname, 12, ' '), explained in the following list:

• The first argument, firstname, specifies padding the Firstname field.
• The second argument, 12, means that data in the Firstname column should

be padded to a total length of 12 characters—the total length includes both
data and the padding symbol.

• The third argument, '', is an instruction to use a blank space as the padding
symbol. Because the LPAD function is used, blank spaces are added to the
left of the customer’s first name until the data’s total length is 12. Notice that
because blank spaces are used to left-pad the data, the customers’ first names
are right-aligned in the second column of output.

The only difference in the second LPAD function is that the padding symbol is set to
an asterisk (*) rather than a blank.

Oracle 12c also provides the RPAD function, which uses a symbol to pad the right
side of a character string to a specific width. The syntax of the RPAD function is RPAD(c,
1, s), where c represents the character string to pad, 1 represents the total length of the
character string after padding, and s represents the symbol or character to use as padding.

The LTRIM and RTRIM Functions
You can use the LTRIM function to remove a specific string of characters from the left side
of data values. The syntax of the LTRIM function is LTRIM(c, s), where c represents the
field to modify, and s represents the string to remove from the left side of data.

For example, suppose the preprinted forms JustLee Books uses contain the string
“P.O. BOX.” However, some customers have “P.O. BOX” as part of their address in the
CUSTOMERS table. The LTRIM function in Figure 10-12 removes the character string
“P.O. BOX” from each customer’s address before displaying it in the output so that it’s not
displayed twice on the preprinted form. Notice that if the string “P.O. BOX” isn’t found in
the address, no trimming occurs.

358

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-12 Using the LTRIM function

Oracle 12c also supports the RTRIM function to remove specific characters from the right
side of data values. The syntax of the RTRIM function is RTRIM(c, s). The c represents the
field to modify, and s represents the string to remove from the right side of data.

The REPLACE Function
The REPLACE function is similar to the “search and replace” function used in many
programs. It looks for the occurrence of a specified string of characters and, if found,
substitutes it with another set of characters. The syntax of the REPLACE function is
REPLACE(c, s, r), where c represents the field to search, s represents the string of
characters to find, and r represents the string of characters to substitute for s. In Figure
10-13, REPLACE(address, 'P.O.', 'POST OFFICE') indicates substituting the string
POST OFFICE in the display every time Oracle 12c encounters the string P.O. in the
Address field of a customer.

FIGURE 10-13 Using the REPLACE function

359

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The TRANSLATE Function
The TRANSLATE function is used to replace a character in a string with a new value. It’s
different from the REPLACE function, in that it modifies single characters rather than a
character string. In addition, you can make more than one substitution operation with a
single use of the TRANSLATE function. This function has three arguments: the field to
modify, the character to search for, and the character to substitute. Figure 10-14 shows
two examples of using the TRANSLATE function.

FIGURE 10-14 Using TRANSLATE to substitute character values

In the first use of TRANSLATE in Figure 10-14, there’s only one character substitution.
This operation searches the Name field for every comma and changes it to a hyphen. So if
the string contains four commas, for example, each one is changed to a hyphen.

The second use of TRANSLATE includes two substitution operations. Notice that the
character substitution arguments are listed in positional order: (', A', '-a'). The first
search character is a comma, which should be replaced with a hyphen, as indicated by the
first substitution character. The second search character, an uppercase “A,” should be
replaced with a lowercase “a,” as specified by the second substitution character.

The CONCAT Function
You have learned how to use the concatenation operator (||) to concatenate, or combine,
data from columns with string literals. The CONCAT function can also be used to
concatenate data from two columns. The main difference between the concatenation
operator and the CONCAT function is that you can combine a long list of columns and
string literals with the concatenation operator; by contrast, you can combine only two
items (columns or string literals) with the CONCAT function. The concatenation operator
is usually preferred because it’s not limited to two items. If you need to combine more
than two items with the CONCAT function, you must nest a CONCAT function inside
another CONCAT function.

The syntax of the CONCAT function is CONCAT(c1, c2), where c1 represents the
first item to include in the concatenation, and c2 represents the second item to include in
the operation. Both c1 and c2 can be a column name or a string literal.

360

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 10-15, the label “Customer number:” has been added before each customer
number, so someone reading the output knows that the column is a customer number
without having to look at the column heading. A column alias has also been added to
identify the column’s contents.

FIGURE 10-15 Using the CONCAT function

N U M B E R F U N C T I O N S

Oracle 12c provides a set of functions specifically designed for manipulating numeric data.
In many organizations’ daily operations, some of the most needed number functions are
ROUND, TRUNC, MOD, ABS, and POWER.

The ROUND Function
The ROUND function is used to round numeric fields to the stated precision. The syntax
of the ROUND function is ROUND(n, p), where n represents the numeric data, or field, to
round, and p represents the position of the digit to which data should be rounded. If the
value of p is a positive number, the function refers to the right side of the decimal.
However, if a negative value is entered, Oracle 12c rounds to the left side of the decimal
position.

In the third column of the results in Figure 10-16, each book’s retail price has been
rounded to the nearest tenth (or a single digit to the right of the decimal). As shown in the
second column, the actual retail price of most books ends with .95. In Oracle 12c (as in
most programs), values of 5 or more are rounded up, and values of less than 5 are rounded
down. In Figure 10-16, the retail price for most books appears to be rounded to the
nearest dollar. However, notice the book The Wok Way to Cook. Its retail price is $28.75,
and when rounded to the nearest tenth, the price is $28.80 (28.8 in the results).

361

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-16 Using the ROUND function to round numbers to various places

The fourth column in Figure 10-16 shows the retail price of books rounded to the
nearest dollar by using ROUND(retail, 0). The 0 indicates that the retail price should
be rounded to no decimal places. The last column in Figure 10-16 shows the results of
rounding the retail price to the nearest tens of dollars, using -1 to indicate that the amount
to the left of the decimal position should be rounded.

The TRUNC Function
At times you need to truncate, rather than round, numeric data. You can use the TRUNC
(truncate) function to truncate a numeric value to a specific position. Any numbers after
that position are simply removed (truncated). The syntax of the TRUNC function is TRUNC
(n, p), where n represents the numeric data or field to truncate, and p represents the
position of the digit where data should be truncated. As with the ROUND function,
entering a positive value for p indicates a position to the right of the decimal, and a
negative number indicates a position to the left of the decimal.

Figure 10-17 shows the TRUNC function using the same arguments as for the ROUND
function. The third column of the output displays the results of TRUNC(retai1,1).
Compare these results with the results of the ROUND function. Unlike the ROUND
function, the results of the TRUNC function don’t depend on what value comes after the
tenths’ position; the TRUNC function simply drops any value beyond the first number after
the decimal, without changing the first number’s value.

362

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-17 Using the TRUNC function to truncate numbers at various places

Again, refer to the book The Wok Way to Cook, with the retail price $28.75. After the
retail price is truncated, the result is $28.7 instead of the $28.8 that resulted from
rounding the price. The value after the tenths’ position has no effect on the result—it’s
simply removed from the retail price.

When a zero is included as the second argument of the TRUNC function, no decimal
positions are displayed for the retail price. However, remember that the dollar amount
displayed isn’t rounded; the decimals are simply dropped.

The MOD Function
The MOD (modulus) function returns only the remainder of a division operation. Two
arguments are needed: the numerator and denominator of the division operation. Say you
have an amount, 235, representing the total ounces of a liquid product, and you need to
convert the amount to pounds and ounces. The first query in Figure 10-18 shows the
result of a division operation (with 16 as the denominator because 16 ounces equal
1 pound), which is 14.6875 pounds. The remaining ounces over 14 pounds are in decimal
form (.6875 of a pound). This decimal amount might be hard to figure out for someone
who needs to know the weight in pounds and ounces to package the liquid for shipping.
The second query uses the MOD function to capture the remainder 11, which represents
the ounces over 14 pounds.

363

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-18 Using the MOD function to return the remainder

N O T E

Use the Run Script button to execute both queries in SQL Developer.

The ABS Function
The ABS (absolute) function returns the absolute, or positive, value of the numeric values
supplied as the argument. For example, when subtracting two date values to determine the
difference in number of days, you might have noticed that the result is negative if the
more recent date is subtracted from the earlier date. Suppose you perform the operation
18-OCT-09 minus 20-OCT-09: The result is -2. If you’re concerned only with the
difference of two dates in number of days and don’t want to be concerned with the order
of dates in the calculation, use the ABS function to always return the absolute value of the
result. The query in Figure 10-19 shows the effect of using the ABS function on a date
calculation.

364

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-19 The effect of using the ABS function

The POWER Function
The POWER function raises the number in first argument to the power indicated as the
second argument. The syntax of the POWER function is POWER(x, y), where x represents
the number you’re raising, and y represents the power to which you’re raising it. For
example, POWER(2,3)produces the result 8 (2 * 2 * 2). Many queries don’t involve
advanced mathematical operations; however, the POWER function is included in this
chapter as a reminder that many mathematical functions are available. Scientific and
financial applications are some examples in which data analysis might require advanced
calculations.

D A T E F U N C T I O N S

By default, Oracle 12c displays date values in a DD-MON-YY format: a two-digit number
for day of the month, a three-letter month abbreviation, and a two-digit number for the
year. For example, the date February 2, 2009 is displayed as 02-FEB-09. Although users
reference a date as a nonnumeric field (that is, a character string that must be enclosed in
single quotation marks), it’s actually stored in a numeric format that includes century,
year, month, day, hours, minutes, and seconds. The valid range of dates that Oracle 12c
can reference is January 1, 4712 B.C. to December 31, 9999 A.D.

N O T E

A default date format is set in the Oracle database configuration. The DBA can set a different date
format in the configuration files, so some installations might not display dates in the default DD-MON-YY
format.

Although dates appear as nonnumeric fields, users can perform calculations with
dates because they’re stored as numeric data. The numeric version of a date used by

365

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Oracle 12c is a Julian date, which represents the number of days that have passed
between a specified date and January 1, 4712 B.C. For example, if you need to calculate
the number of days between two dates, Oracle 12c first converts the dates to the Julian
date numeric format, and then determines the difference between the two dates. If Oracle
12c didn’t have a numeric equivalent for a date, trying to derive the solution for the
arithmetic expression '02-JAN-06' - '08-SEP-05' would be a problem.

Look at the calculation with date columns in Figure 10-20. Order 1004 didn’t ship the
same day it was ordered. To determine how many days shipment was delayed, the
Orderdate column is subtracted from the Shipdate column. In calculations between two
date fields, the results are returned in number of days because dates are stored internally
as numeric values.

FIGURE 10-20 A calculation with date columns

By contrast, if you need the results returned in terms of weeks rather than days,
simply divide the results by 7. For example, to have the results of the query in Figure 10-
20 reported in terms of weeks (or portion of a week, in this case), the equation in the
SELECT clause must be changed to (shipdate-orderdate)/7. However, converting
date calculation results to a unit you need can be difficult sometimes. For example,
suppose you need to know the number of months between two dates. Do you divide by 30
or by 31? What number should you use for February? As shown in the following sections,
Oracle 12c provides several functions to assist with these calculations.

N O T E

The calculation shown in Figure 10-20 has an earlier date (Orderdate, 01-APR-09) subtracted from a
more recent date (Shipdate, 05-APR-09), so the result is positive. If the order of the calculation is
reversed (Orderdate-Shipdate), the result is the same number of days, except the resulting number is
negative.

366

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The MONTHS_BETWEEN Function
Suppose management wants to know whether customers’ orders are higher for more
recently released books or for books published several months (or even years) ago. To find
the answer, you might simply subtract the publication date (Pubdate) from the order date
(Orderdate) for a book to determine how many days a book was available to the public
before it was ordered. However, as mentioned previously, what number should be used to
convert days to months? Oracle 12c provides the MONTHS_BETWEEN function, shown
in Figure 10-21, to determine the number of months between two dates. The syntax is
MONTHS_BETWEEN(dl, d2), where dl and d2 are the two dates in question, and d2 is
subtracted from dl.

FIGURE 10-21 Using the MONTHS_BETWEEN function

In Figure 10-21, the user wants to determine how many months the book from order
1004 was available before the customer placed this order. Notice that the query results
don’t just provide a whole number to indicate the number of months that have elapsed.
Instead, the digits after the decimal indicate portions of a month. To remove the portions
of a month, include the MONTHS_BETWEEN function nested inside a TRUNC or ROUND
function.

The ADD_MONTHS Function
The management of JustLee Books renegotiates contract pricing for books every 18
months and stocks books for up to 7 years after they’re published. Management believes
that after 7 years, sales for most books will decline to a level that makes keeping them in
inventory no longer profitable. Therefore, management periodically requests a list of
current books in inventory, along with the date each book contract should be renegotiated
and the date the book should be dropped from inventory.

One method of calculating the “renegotiate date” is to use an average of 30 days for
a month and add 540 (30 * 18) days to the most recent negotiation date of each book.
However, an even better approach is using the ADD_MONTHS function, as shown in
Figure 10-22. Assume that books in the Computer category were last negotiated on
December 1, 2008.

367

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-22 Using the ADD_MONTHS function

In Figure 10-22, the ADD_MONTHS function is applied to the most recent negotiation
date and Pubdate column for each book to determine its “Renegotiate Date” and “Drop
Date.” The syntax of the ADD_MONTHS function is ADD_MONTHS(d, m), where d
represents the beginning date for the calculation, and m represents the number of months
to add to the date. As shown, the result of the ADD_MONTHS function is a new date with
the correct number of months added to the old date. The database system understands the
calendar and can manipulate dates in terms of months accurately.

The NEXT_DAY and LAST_DAY Functions
JustLee Books has a policy that books must be shipped by the first Monday after receiving
a customer’s order. Whenever an order is received, the customer is informed of the latest
date the order is expected to ship. The NEXT_DAY function, shown in Figure 10-23, can
determine the next occurrence of a specific day of the week after a given date. The syntax
of the NEXT_DAY function is NEXT_DAY(d, DAY), where d represents the starting date,
and DAY represents the day of the week to identify.

FIGURE 10-23 Using the NEXT_DAY function

368

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 10-23, order 1018 was ordered on April 5, 2009. Because JustLee’s policy is
to inform a customer of the latest possible ship date, the query requests the date of the
first Monday following the order date. As shown in the results, the customer can expect
the order to be shipped by April 6—the first Monday after April 5.

N O T E

If the order date in this example happens to be on a Monday, the NEXT_DAY function returns the date
for the following Monday, or one week away.

The LAST_DAY function is similar to the NEXT_DAY function, except it always
determines the last day of the month for a given date. The example in Figure 10-24
retrieves the last day of the month for the month of two selected order dates.

FIGURE 10-24 Using the LAST_DAY function

The TO_DATE Function
The TO_DATE function is of particular interest to application developers. Many database
users are uncomfortable entering a date in the default DD-MON-YY format because they’re
more accustomed to entering dates as MM/DD/YY or Month DD, YYYY. The TO_DATE
function allows users to enter a date in any format, and then it converts the entry into the
default format used by Oracle 12c. The syntax of the TO_DATE function is TO_DATE
('d', 'f'), where d represents the date entered by the user, and f is the formatting
instruction for the date. A format argument consists of a series of elements representing
exactly what the data should look like and must be entered in single quotation marks.
Table 10-2 shows valid formats for entering a date in the TO_DATE function.

369

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 10-2 Format Arguments for Dates

Element Description Example

MONTH Name of the month spelled out and padded
with blank spaces to a total width of nine
characters

APRIL

MON Three-letter abbreviation for the name of
the month

APR

MM Two-digit numeric value for the month 04

RM Roman numeral representing the month IV

D Numeric value for the day of the week Wednesday ¼ 4

DD Numeric value for the day of the month 28

DDD Numeric value for the day of the year December 31 ¼ 365

DAY Name of the day of the week, padded with
blank spaces to a length of nine characters

WEDNESDAY

DY Three-letter abbreviation for the day of the
week

WED

YYYY Displays the four-digit numeric value of the
year

2009

YYY or YY or Y The last three, two, or single digits of the
year

2009 ¼ 009; 2009 ¼ 09; 2009 ¼ 9

YEAR Spelled-out version of the year TWO THOUSAND NINE

B.C. or A.D. Value indicating B.C. or A.D. 2009 A.D.

N O T E

For a list of additional format arguments, see the section “The TO_CHAR Function” later in this chapter.

When working with the TO_DATE function, you enter the specified date as the first
argument. The second argument is a formatting instruction that allows Oracle 12c to
distinguish different parts of the date. Because both arguments are character strings, each
argument must be enclosed in single quotation marks.

Suppose you need a list of orders placed on March 31, 2009, and shipped in April, and
you enter the order date in the format Month DD, YYYY. As shown in Figure 10-25, using
the TO_DATE function in a WHERE clause enables you to enter the order date in the
preferred format, and then include the format argument Oracle 12c needs to interpret the
order date. Notice that literals, such as commas, are included in the format argument string.

370

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-25 Using the TO_DATE function

N O T E

The TO_DATE function is used routinely in INSERT statements to convert user date input into values
Oracle 12c identifies as dates for inserting into columns with a DATE datatype.

T I P

A DATE keyword can also be used in an INSERT statement to indicate a date value in the ANSI
standard date format YYYY-MM-DD. Here’s an example of an INSERT statement using the DATE
keyword:

INSERT INTO tablename (id, datecol) VALUES (1, DATE '2009-10-31');

Rounding Date Values
Even though the ROUND function is typically associated with numeric data, you can use it
on date values as well. The syntax of the ROUND function is ROUND (d, u), where d
represents the date data, or field, to round, and u represents the unit to use for rounding.
A date can be rounded by the unit of month or year. Figure 10-26 shows each book’s
publish date rounded by month and year. For month rounding, if the day of the month is
16 or later, the date is rounded up to the first of the next month. If the day of the month is
less than 16, the date is rounded down to the first of that month. Year rounding works
similarly, with July 16th as the cutoff to determine rounding.

371

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-26 Rounding dates by month and year

N O T E

The 'YEAR' unit can also be represented with a 'YYYY' argument, and the 'MONTH' unit can be
represented with a 'MM' argument.

Truncating Date Values
The TRUNC function, used for truncating numeric results, can also be quite useful in date
calculations and is applied to dates by using the unit of month or year. The query shown
previously in Figure 10-21 returned the number of months between the order date and the
publication date of the book that was ordered. However, the output included portions of a
month. To eliminate the decimal portion of the output and return only the number of
whole months between the two dates, you can nest the MONTHS_BETWEEN function
inside the TRUNC function, as shown in Figure 10-27.

372

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-27 Using the TRUNC function on date calculation results

Remember that the TRUNC function has two arguments—the value to truncate and
the position at which the truncation should occur. The value to truncate is the result of
the MONTHS_BETWEEN function. Therefore, the MONTHS_BETWEEN function is entered
as the first argument of the TRUNC function in Figure 10-27. The closing parenthesis after
the Pubdate column name completes the MONTHS_BETWEEN function.

The nested MONTHS_BETWEEN function is followed by a comma, a zero, and a
parenthesis, which serve to complete the TRUNC function. The zero indicates there
should be no decimal positions after the truncation occurs, and the parenthesis closes the
TRUNC function. The value calculated by the inner function (MONTHS_BETWEEN) is
used to complete the outer function (TRUNC), and the result is the whole number of
months between the book’s publication date and order date.

CURRENT_DATE Versus SYSDATE
Many companies conduct transactions in different parts of the world, so time zone
recognition is essential. Both the CURRENT_DATE and SYSDATE functions identify the
current date and time, but you should know the differences between them. The SYSDATE
function returns the current date and time set on the operating system where the database
resides, but the CURRENT_DATE function returns the current date and time from the
user session. A client software tool, such as SQL*Plus or SQL Developer, connecting to a
database on a separate machine must be used in this example so that the session’s time
zone setting is different from the database’s time zone setting. Because iSQL*Plus runs
from the database server, it’s not actually a client session and doesn’t allow identifying a
different client session time zone.

To demonstrate, the local computer is set to a different time zone from the database
server (by resetting the time zone in Windows). Figure 10-28 shows an SQL Developer
connection from the local computer (set to the Asia/Tokyo time zone) to the Oracle 12c
server (set to the Eastern U.S./Canada time zone). The query verifies the time zone
settings of the client (CURRENT_TIMESTAMP) and the database server
(SYSTIMESTAMP).

373

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-28 Identifying time zone information

The time zone is indicated in Greenwich mean time (also referred to as Universal
Coordinated Time). Notice that the client session time is 14 hours ahead of the database
time. The query in Figure 10-29 uses the SYSDATE and CURRENT_DATE values to
highlight the difference in time for the client session and database server.

FIGURE 10-29 Retrieving session and database server times

N O T E

A TIMESTAMP datatype is available for storing time zone information as part of the date value in a
column. The DATE datatype doesn’t store time zone information.

R E G U L A R E X P R E S S I O N S

Oracle 12c recognizes regular expressions, which allow describing complex patterns in
textual data. Although these tools have roots in the UNIX environment, they’re used in
many languages. Regular expressions adhere to Portable Operating System Interface for
UNIX (POSIX) standards—a set of IEEE and ISO standards that define an interface
between programs and operating systems.

374

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You already know that simple pattern matching can be accomplished by using the
LIKE operator. However, the LIKE operator is limited to the _ and % wildcard characters
and must reference a whole string value instead of just a portion of it. Assume JustLee
Books is researching the possibility of expanding operations into used book sales. A list of
used book dealers has been purchased and loaded into a table named SUPPLIERS. Review
the data in this table, shown in Figure 10-30.

FIGURE 10-30 SUPPLIERS table data

Notice that the Description column might or might not contain a phone number. In
addition, phone numbers are recorded in different formats, such as with hyphens or
periods, and one phone number is missing an area code. What if JustLee Books wants
to produce a list of only the vendors with a complete phone number recorded? The
REGEXP_LIKE function handles this task, as it can reference an extended set of pattern
operators available for regular expression operations. Figure 10-31 shows the
REGEXP_LIKE function in a query to accomplish this task. Review the regular expression
along with the pattern operators used as the second argument to the function.

375

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-31 Using REGEXP_LIKE to identify complete phone numbers

Notice that the REGEXP_LIKE function has two arguments. The first argument
indicates which value should be searched (the Description column, in this case). The
second argument identifies the pattern it’s attempting to locate in the search value (a
12-character string, in this example). Keep in mind that the search pattern needs to match
only a part of the entire value being searched. It doesn’t need to reflect the contents of the
entire search string, as with the LIKE operator. Table 10-3 lists the pattern operators used
in this example and describes what each one searches for in the 12-character string.

TABLE 10-3 Regular Expression Pattern Operators

Pattern Operator Description

[0-9] {3} The [0-9] operator indicates that it’s looking for a single character that must
be a digit. The {3} indicates repeating the previous operator three times. In
this case, these two operators together search for a three-digit number.

[–.] This operator indicates that the next character must be a hyphen (-) or a
period.

[0-9] {3} The next three places in the string must contain three digits.

[–.] The next place in the string can be a hyphen (-) or period.

[0-9] {4} The last four places in the string must contain four digits.

T I P

If you want a list of the suppliers who don’t have a complete phone number recorded, you could use the
NOT operator in the WHERE clause to identify these records.

376

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

What if JustLee Books wants a list of just supplier names and phone numbers instead
of the entire description? You can use the REGEXP_SUBSTR function to extend the
capabilities of the SUBSTR function, using the same pattern-matching operators. Figure
10-32 shows a SELECT clause modified to extract the phone number from the Description
column by using REGEXP_SUBSTR.

FIGURE 10-32 Using REGEXP_SUBSTR to extract phone numbers

This discussion simply introduces the concept of using regular expressions, which is
an extensive topic. Many other pattern-matching operators are available and provide
tremendously flexible tools for handling complex pattern searches. You can find more
information on regular expressions in the SQL reference on the Oracle Technology
Network Web site.

O T H E R F U N C T I O N S

Some functions provided by Oracle 12c don’t fall neatly into a character, numeric, or date
category. However, these functions are important and widely used in business. The
following sections discuss these functions: NVL, NVL2, NULLIF, TO_CHAR, DECODE,
CASE expression, SOUNDEX, and TO_NUMBER.

The NVL Function
You can use the NVL function to address problems caused when performing arithmetic
operations with fields that might contain NULL values. (Recall that a NULL value is the
absence of data, not a blank space or a zero.) When a NULL value is used in a calculation,
the result is always a NULL value. The NVL function is used to substitute a value for the
existing NULL so that the calculation can be completed. The syntax of the NVL function is
NVL(x, y), where y represents the value to substitute if x is NULL. In many cases, the
substitute for a NULL value in a calculation is zero (0).

377

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In practice, the NVL function is commonly used to calculate an employee’s gross pay
as “salary + commission.” What happens when an employee’s sales aren’t high enough to
earn a commission, however? If you add the employee’s salary to a NULL commission, the
resulting gross pay is NULL—which means no paycheck! Unfortunately, you’ll probably
realize the error has occurred when the employee storms into your office, angry about the
absence of a paycheck. To avoid this problem, instead of calculating gross pay as salary
plus commission, use salary+NVL (commission, 0). The NVL function simply
substitutes a zero when the commission is NULL, and the person still gets paid because
“salary + 0” still equals “salary.”

Say you get a request to produce a list of all books along with the current sales price—
the retail price less the discount amount. After reviewing the data, you discover some
books don’t have a discount amount, so this value is NULL. If you don’t address the NULL
value issue in the calculation, incorrect results are produced. Figure 10-33 shows a query
using subtraction to calculate the current sales price.

FIGURE 10-33 Calculation involving a NULL value

Notice that each book with a NULL discount value shows a NULL sales price as a
result of the calculation. To solve this problem, use the NVL function, as shown in
Figure 10-34, to modify the query and produce a sales price for every book.

378

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-34 Handle NULL calculations with the NVL function

The NVL function isn’t restricted to use with number values. Suppose management
requests a report showing the number of days it took to ship each order placed on or after
April 3, 2009. Some of these orders might not have shipped yet, but they’re expected to
ship on the following Monday. If the Shipdate column for an order is left blank (NULL) for
pending shipments, the number of days to ship can’t be calculated by simply subtracting
Shipdate and Orderdate. However, an anticipated Shipdate could be included by using the
NVL function for calculating the days. The query in Figure 10-35 returns the number of
days to ship, using an anticipated shipping date of April 6, 2009 for any orders not yet
shipped.

379

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-35 Date calculations involving a NULL value

In Figure 10-35, the days between the Orderdate and Shipdate columns for each order
are calculated. Because some orders haven’t been shipped yet, the actual ship date is a
NULL value, and the NVL function is used to substitute the anticipated shipping date of
April 6, 2009 before completing the calculation. The NVL function instructs Oracle 12c
that if the Shipdate column is NULL, substitute April 6, 2009 as the shipping date for the
order, and then subtract the order date from the assigned shipment date. After the NVL
function has made the substitution, the subtraction is performed and the number of days
is calculated.

The NVL2 Function
The NVL2 function is a variation of the NVL function with different options based on
whether a NULL value exists. The syntax of the NVL2 function is NVL2(x, y, z), where y
represents what should be substituted if x isn’t NULL, and z represents what should be
substituted if x is NULL. This variation gives you a little more flexibility when working
with NULL values.

Returning to the gross pay calculation example, instead of using the equation salary
+NVL(commission, 0) to substitute a zero when the commission is NULL, you could use
NVL2(commission, salary, salary+commission). The NVL2 function is read as
“If the commission IS NOT NULL, the gross pay is just salary. If the commission IS NULL,
calculate gross pay as salary plus commission.”

380

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As another example, suppose management needs a report describing the shipment status
of orders. The report should list an order as shipped or not shipped. You could use the NVL2
function to display each order’s status, based on whether the Shipdate column contains a
NULL value. Because a date indicates that an order has been shipped and a NULL value
indicates that an order hasn’t shipped, it’s the ideal situation for using the NVL2 function.

In Figure 10-36, the NVL2 function displays one of two character strings, depending
on whether the Shipdate column contains a NULL value. Because character strings are
used in the function, they must be enclosed in single quotation marks. If they aren’t,
Oracle 12c assumes an existing column is being referenced and returns an error because
these columns don’t exist in the table.

FIGURE 10-36 Using NVL2 to substitute values

The NULLIF Function
The NULLIF function is used to compare two values for equality. If the two values are
equal, the function returns a NULL value. If the two values aren’t equal, the function
returns the first of the two values compared. For example, JustLee Books management
might need to find out whether items in an order were purchased on sale or at the normal
retail price. Figure 10-37 shows a query that compares the Paideach value of an order
to the Retail value of the book. Notice that the NULLIF function value is NULL if the
Paideach and Retail amounts are equal. Otherwise, the Paideach value is displayed.
This query includes only orders 1001 and 1007.

381

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-37 Using NULLIF to display the sale price

The NULLIF function is often combined with the NVL2 function to display a
descriptive status. Figure 10-38 adds the NVL2 function to produce the value “Regular
Price” or “Sale Price,” based on the result of the NULLIF operation.

FIGURE 10-38 Using NVL2 with NULLIF

382

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The TO_CHAR Function
The TO_CHAR function is often used to convert dates and numbers to a formatted
character string. It’s the opposite of the TO_DATE function for handling date data
discussed previously. The TO_DATE function allows you to enter a date in any type of
format and use the format argument to read the value as a date. The TO_CHAR function,
on the other hand, is used to have Oracle 12c display dates in a particular format. The
syntax of the TO_CHAR function is TO_CHAR(n, 'f'), where n is the date or number to
format, and f is the formatting instruction to use. Figure 10-39 shows an example of
formatting values with the TO_CHAR function.

FIGURE 10-39 Formatting values for display with TO_CHAR

The query in Figure 10-39 contains two TO_CHAR functions. The first TO_CHAR is
used to convert the publication date (Pubdate) to the date format MONTH DD, YYYY:
month of the year spelled out, followed by the two-digit day of the month, a comma, and
then the four-digit year. If you prefer displaying the month name in mixed case (that is,
“December”), simply use this case in the format argument: ('Month DD, YYYY').

The second TO_CHAR function in Figure 10-39 is used to format the book’s retail
price (Retail column) to display a dollar sign and two decimal positions. If the format
argument isn’t used, the retail price is displayed as 22—without the dollar sign or any
decimals.

Oracle 12c provides a wide variety of elements you can use to create format
arguments for dates and numbers. Table 10-4 describes some commonly used format
arguments. Notice that some of the same format arguments can be used with both the
TO_DATE and TO_CHAR functions.

383

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 10-4 Format Arguments

Element Description Example

Dates

MONTH Name of the month spelled out APRIL

MON Three-letter abbreviation for the name of the month APR

MM Two-digit numeric value for the month 04

RM Roman numeral representing the month IV

D Numeric value for day of the week 4 (indicates
Wednesday)

DD Numeric value for day of the month 28

DDD Numeric value for day of the year 365 (indicates
December 31)

DAY Name of day of the week WEDNESDAY

DY Three-letter abbreviation for day of the week WED

YYYY Four-digit numeric value for the year 2009

YYY or YY or Y Numeric value for the last three, two, or single digit
of the year

009, 09, or 9

YEAR Spelled-out version of the year TWO THOUSAND NINE

BC or AD Value indicating B.C. or A.D. 2009 A.D.

Time

SS Seconds Value between 0–59

SSSS Seconds past midnight Value between 0–86399

MI Minutes Value between 0–59

HH or HH12 Hours Value between 1–12

HH24 Hours (for military time) Value between 0–23

A.M. or P.M. Value indicating morning or evening hours A.M. (before noon) or
P.M. (after noon)

384

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 10-4 Format Arguments (continued)

Element Description Example

Numbers

9 Indicates display width with a series of 9s but doesn’t
display insignificant leading zeros

99999

0 Displays insignificant leading zeros 00099999

$ Displays a floating dollar sign $99999

. Indicates the decimal position 999.99

, Displays a comma in the indicated position 9,999

Other

., (punctuation
symbols)

Displays the indicated punctuation DD, YYYY = 24, 2009

"string" Displays the exact characters inside the double
quotation marks

"of the year" YYYY =
of the year 2009

TH Displays the ordinal number DDTH = 8th

SP Spells out the number DDSP = EIGHT

SPTH Spells out the ordinal number DDSPTH = EIGHTH

N O T E

An RR format argument was used in the past to address potential problems raised by Y2K and storing
only two-digit years. However, most people in the industry use the YYYY format argument to specify the
exact century for a date.

The DECODE Function
The DECODE function takes a specified value and compares it to values in a list. If a
match is found, the specified result is returned. If no match is found, a default result is
returned. If no default result is defined, a NULL is returned. The DECODE function
enables you to specify different actions to take, depending on the circumstances (for
example, the exact value is or isn’t contained in a column). It saves you from having to
enter multiple statements for each possible situation.

The syntax of the DECODE function is DECODE(V, L1, R1, L2, R2, ..., D), where
V is the value you’re searching for, L1 represents the first value in the list, R1 represents
the result to return if L1 and V are equivalent, and so on, and D is the default result to
return if no match is found.

385

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

The DECODE function is similar to the CASE or IF . . . THEN . . . ELSE structures used in many
programming languages.

JustLee Books is required to collect sales tax from customers who live in Florida and
California but not from customers in other states. Suppose Florida’s sales tax is 7%, and
California’s is 8%. So if a customer resides in California, he or she must pay 8% of the total
order price as sales tax; if the customer lives in Florida, he or she must pay 7% sales tax; if
the customer lives in any other state, no sales tax is paid.

To determine the sales tax rate that applies to each customer, you can use the
DECODE function to compare the state where each customer lives to a list of states. If a
match occurs, the sales tax rate for that state is returned. However, if the customer lives
in a state that isn’t listed, a default sales tax rate of 0 is applied, as shown in Figure 10-40.

FIGURE 10-40 Using DECODE to determine sales tax rate by state

In Figure 10-40, the DECODE function begins on line 2. The State column is identified
as the value to compare against the list. The state of California (CA) is the first item
against which the value of the State column is compared. If the State column contains the
value CA, a sales tax rate of .08 is returned, and the DECODE function is processed again

386

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for the next customer. If the value in the State column isn’t CA, the value is compared
against the next item in the list. (Note that the second listed item has been placed on line
3 to improve readability of the function.) If the value for the State column is equal to FL, a
sales tax rate of .07 is returned. If the value in the State column isn’t equal to the two
items listed (CA or FL), the default value is assigned, which in this case is zero.

The CASE Expression
The CASE expression is similar to the DECODE function, in that it can perform IF . . .
THEN . . . ELSE conditional processing. Both the simple CASE expression and the DECODE
function evaluate equality conditions. However, the searched CASE expression gives you
more flexibility because it allows other comparisons besides equality. For example, you
might need to determine the retirement level assigned to each employee, based on the
number of years employed at JustLee Books. The retirement levels are determined by using
ranges of years. The Level 1 retirement category includes employees employed less than
4 years, Level 2 is less than 8 years, and so forth. The searched CASE expression in Figure
10-41 determines the retirement category for each employee based on years employed.

FIGURE 10-41 Using a searched CASE expression

The SOUNDEX Function
Some government agencies and organizations perform searches for information based on
the phonetic pronunciation of words instead of their spelling. For example, in many states,
the first four characters and numbers of a driver’s license number represent the phonetic
sound of the person’s last name at the time the license was issued (but doesn’t change if

387

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the person’s last name changes). Oracle 12c can reference the phonetic sound or
representation of words with the SOUNDEX function. The syntax of the function is
SOUNDEX(c), where c is the character string being referenced.

Say that a customer has called to make an inquiry about an order. She doesn’t have
the order number, so you enter a search based on her last name, which is Smyth. No
records are returned because no customers with this last name are recorded in the
database. What do you do next? A secondary search with the SOUNDEX function can
return any names recorded with a pronunciation similar to Smyth, as shown in Figure 10-42.
Notice that two possible matches are found, both with the last name Smith. In this case, an
employee mistakenly entered the last name with an “i” rather than a “y.”

FIGURE 10-42 Using the SOUNDEX function

The TO_NUMBER Function
The TO_NUMBER function converts a value to a numeric datatype, if possible. For
example, the string value 2009 stored in a date or character string could be converted to a
numeric datatype to use in calculations. If the string being converted contains nonnumeric
characters, the function returns an error.

For example, you need to calculate how old each book in the Computer category is in
terms of years. You can subtract the current date and book publication date, divide by
365, and then use rounding. Another method is identifying the year of each date and using
subtraction. Figure 10-43 shows using the TO_NUMBER function to convert the year value
of each date to a numeric datatype to use in the subtraction operation.

388

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10-43 Using the TO_NUMBER function to convert a string to a numeric datatype

N O T E

Your output might vary because SYSDATE is used in the calculation.

T H E D U A L T A B L E

Any of the single-row functions covered in this chapter can be used with the DUAL table.
Although the DUAL table is rarely used in the industry, it can be valuable for someone
learning how to work with functions or testing new functions. For example, if you want to
practice rounding numbers or determining the length of character strings, you can enter a
specific value in the function you’re practicing and reference the DUAL table in the FROM
clause, as shown in Figure 10-44.

FIGURE 10-44 Practicing functions by using the DUAL table

389

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• Single-row functions return a result for each row or record processed.
• Case conversion functions, such as UPPER, LOWER, and INITCAP, can be used

to alter the letter case of character strings.
• Character manipulation functions can be used to extract substrings (portions of a

string), identify the position of a substring in a string, replace occurrences of a
string with another string, determine the length of a character string, and trim
spaces or characters from strings.

• Nesting one function inside another allows performing multiple operations on data.
• Simple number functions, such as ROUND and TRUNC, can round or truncate a

number on both the left and right side of a decimal.
• The MOD function is used to return the remainder of a division operation.
• Date functions can be used to perform calculations with dates or change the

format of dates entered by a user.
• Regular expressions enable complex pattern-matching operations.
• The NVL, NVL2, and NULLIF functions are used to identify and manipulate NULL

values.
• The TO_CHAR function enables you to display numeric data and dates in a

specific format.
• The DECODE function allows determining the resulting value by testing for

equality to a specific value.
• The searched CASE expression enables you to evaluate conditions to determine

the resulting value.
• The SOUNDEX function looks for records based on the phonetic pronunciation of

characters.
• The DUAL table can be helpful when testing functions.

Chapter 10 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Function Description Syntax

Case Conversion Functions

LOWER Converts characters to lowercase
letters.

LOWER(c)
c ¼ Character string or field to convert
to lowercase

UPPER Converts characters to uppercase
letters.

UPPER(c)
c ¼ Character string or field to convert
to uppercase

390

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Function Description Syntax

Case Conversion Functions

INITCAP Converts words to mixed case
(with initial capital letters).

INITCAP(c)
c ¼ Character string or field to convert
to mixed case

Character Manipulation Functions

SUBSTR Returns a substring (portion of a
string) in the output.

SUBSTR(c, p, 1)
c ¼ Character string
p ¼ Position (beginning) for the
extraction
1 ¼ Length of output string

INSTR Identifies the position of the
search string.

INSTR(c, s, p, o)
c ¼ Character string to search
s ¼ Search string
p ¼ Search starting position
o ¼ Occurrence of search string to
identify

LENGTH Returns the numbers of characters in a
string.

LENGTH(c)
c ¼ Character string to analyze

LPAD and RPAD Pads, or fills in, the area to the left
(or right) of a character string,
using a specific character—or
even a blank space.

LPAD(c, 1, s)
c ¼ Character string to be pad
1 ¼ Length of character string after
padding
s ¼ Symbol or character used as
padding

RTRIM and LTRIM Trims, or removes, a specific string of
characters from the right (or left) of
data.

LTRIM(c, s)
c ¼ Characters to modify
s ¼ String to be removed from the left
of data

REPLACE Performs a search and replace of
displayed results.

REPLACE(c, s, r)
c ¼ Data or column to search
s ¼ String of characters to find
r ¼ String of characters to substitute
for s

TRANSLATE Converts single characters to a sub-
stitution value.

TRANSLATE(c, s, r)
c ¼ Character string to search
s ¼ Search character
r ¼ Substitution character

CONCAT Used to concatenate two data items. CONCAT(c1, c2)
c1 ¼ First data item to concatenate
c2 ¼ Second data item to concatenate

391

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Function Description Syntax

Number Functions

ROUND Rounds numeric fields. ROUND(n, p)
n ¼ Numeric data or field to round
p ¼ Position to which the data should
be rounded

TRUNC Truncates, or cuts, numbers to a
specific position.

TRUNC(n, p)
n ¼ Numeric data or field to truncate
p ¼ Position to which the data should
be truncated

MOD Returns the remainder of a division
operation.

MOD(n, d)
n ¼ Numerator
d ¼ Denominator

ABS Returns the absolute value of a
numeric value.

ABS(n)
n ¼ Numeric value

POWER Raises a number to a specified power. POWER(x, y)
x ¼ Number to raise
y ¼ Power to which the number should
be raised

Date Functions

MONTHS_
BETWEEN

Determines the number of months
between two dates.

MONTHS_BETWEEN(dl, d2)
dl and d2 ¼ Dates in question
d2 is subtracted from dl

ADD_
MONTHS

Adds months to a date to signal a target
date in the future.

ADD_MONTHS(d, m)
d ¼ Date (beginning) for the calculation
m ¼ Months—number of months to add
to the date

ROUND Rounds date fields by month or year. ROUND(d, u)
d ¼ Date value
u ¼ Date unit (YEAR or MONTH)

NEXT_DAY Determines the next day—a specific
day of the week after a given date.

NEXT_DAY(d, DAY)
d ¼ Date (starting)
DAY ¼ Day of the week to be identified

LAST_DAY Determines the last day of the month
for the month of a given date.

LAST_DAY(d)
d ¼ Date

TO_DATE Converts a date in a specified format to
the default date format.

TO_DATE(d, 'f')
d ¼ Date entered by the user
f ¼ Format argument to use

392

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Function Description Syntax

Regular Expressions

REGEXP_ LIKE Searches for pattern values in a char-
acter string.

REGEXP_LIKE(c, p)
c ¼ Character string
p ¼ Pattern operators

REGEXP_ SUBSTR Extracts the part of a string that
matches a pattern of values.

REGEXP_SUBSTR(c, p)
c ¼ Character string
p ¼ Pattern operators

Other Functions

NVL Solves problems caused by performing
arithmetic operations with fields that
might contain NULL values. When a
NULL value is used in a calculation,
the result is a NULL value. The NVL
function is used to substitute a value
for the existing NULL.

NVL(x, y)
y ¼ Value to be substituted if x is NULL

NVL2 Provides options based on whether a
NULL value exists.

NVL2(x, y, z)
y ¼ What should be substituted if x is
not NULL
z ¼ What should be substituted if x is
NULL

NULLIF Returns a NULL value if the given
values equate; otherwise, returns the
first given value.

NULLIF(x, y)
x and y ¼ Values to compare

TO_CHAR Converts dates and numbers to a
formatted character string.

TO_CHAR(n, 'f')
n ¼ Number or date to format
f ¼ Format argument to use

DECODE Compares a given value to values in a
list. If a match is found, the specified
result is returned. If no match is found,
a default result is returned. If no
default result is defined, a NULL value
is returned.

DECODE(V, L1, R1, L2, R2, ..., D)
V ¼ Value to search for
L1 ¼ First value in the list
R1 ¼ Result to return if L1 and V match
D ¼ Default result to return if no match
is found

393

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Function Description Syntax

Other Functions

Searched CASE
expression

Evaluates a given value with conditions
to determine a resulting value.

CASE
WHEN V1 cond THEN R1
WHEN V2 cond THEN R2
ELSE D
END
V1 ¼ First value evaluated
cond ¼ Condition to evaluate
R1 ¼ Result to return if cond for V1 is
TRUE
D ¼ Default result to return if no cond
is TRUE

SOUNDEX Converts alphabetic characters to
their phonetic pronunciation, using an
alphanumeric algorithm.

SOUNDEX(c)
c ¼ Characters to represent
phonetically

TO_NUMBER Converts numeric digits stored in a
date or character value to a number.

TO_NUMBER(v)
v ¼ Value to convert

Review Questions

1. Why are functions in this chapter referred to as “single-row” functions?

2. What’s the difference between the NVL and NVL2 functions?

3. What’s the difference between the TO_CHAR and TO_DATE functions when working with
date values?

4. How is the TRUNC function different from the ROUND function?

5. What functions can be used to search character strings for specific patterns of data?

6. What’s the difference between using the CONCAT function and the concatenation operator
(||) in a SELECT clause?

7. Which functions can be used to convert the letter case of character values?

8. Describe a situation that calls for using the DECODE function.

9. What format model should you use to display the date 25-DEC-09 as Dec. 25?

10. Why does the function NVL(shipdate, 'Not Shipped') return an error message?

394

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multiple Choice

To answer the following questions, refer to the tables in the JustLee Books database.

1. Which of the following is a valid SQL statement?

a. SELECT SYSDATE;

b. SELECT UPPER(Hello) FROM dual;

c. SELECT TO_CHAR(SYSDATE, 'Month DD, YYYY') FROM dual;

d. all of the above

e. none of the above

2. Which of the following functions can be used to extract a portion of a character string?

a. EXTRACT

b. TRUNC

c. SUBSTR

d. INITCAP

3. Which of the following determines how long ago orders that haven’t shipped were
received?

a. SELECT order#, shipdate-orderdate delay

FROM orders;

b. SELECT order#, SYSDATE - orderdate

FROM orders

WHERE shipdate IS NULL;

c. SELECT order#, NVL(shipdate, 0)

FROM orders

WHERE orderdate is NULL;

d. SELECT order#, NULL(shipdate)

FROM orders;

4. Which of the following SQL statements produces “Hello World” as the output?

a. SELECT "Hello World" FROM dual;

b. SELECT INITCAP('HELLO WORLD') FROM dual;

c. SELECT LOWER('HELLO WORLD') FROM dual;

d. both a and b

e. none of the above

5. Which of the following functions can be used to substitute a value for a NULL value?

a. NVL

b. TRUNC

c. NVL2

d. SUBSTR

e. both a and d

f. both a and c

395

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Which of the following is not a valid format argument for displaying the current time?

a. 'HH:MM:SS'

b. 'HH24:SS'

c. 'HH12:MI:SS'

d. All of the above are valid.

7. Which of the following lists only the last four digits of the contact person’s phone number at
American Publishing?

a. SELECT EXTRACT(phone, -4, 1)

FROM publisher

WHERE name ¼ 'AMERICAN PUBLISHING';

b. SELECT SUBSTR(phone, -4, 1)

FROM publisher

WHERE name ¼ 'AMERICAN PUBLISHING';

c. SELECT EXTRACT(phone, -1, 4)

FROM publisher

WHERE name ¼ 'AMERICAN PUBLISHING';

d. SELECT SUBSTR(phone, -4, 4)

FROM publisher

WHERE name ¼ 'AMERICAN PUBLISHING';

8. Which of the following functions can be used to determine how many months a book has
been available?

a. MONTH

b. MON

c. MONTH_BETWEEN

d. none of the above

9. Which of the following displays the order date for order 1000 as 03/31?

a. SELECT TO_CHAR(orderdate, 'MM/DD')

FROM orders

WHERE order# ¼ 1000;

b. SELECT TO_CHAR(orderdate, 'Mth/DD')

FROM orders

WHERE order# ¼ 1000;

c. SELECT TO_CHAR(orderdate, 'MONTH/YY')

FROM orders

WHERE order# ¼ 1000;

d. both a and b

e. none of the above

396

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10. Which of the following functions can produce different results, depending on the value of a
specified column?

a. NVL

b. DECODE

c. UPPER

d. SUBSTR

11. Which of the following SQL statements is not valid?

a. SELECT TO_CHAR(orderdate, '99/9999')

FROM orders;

b. SELECT INITCAP(firstname), UPPER(lastname)

FROM customers;

c. SELECT cost, retail,

TO_CHAR(retail-cost, '$999.99') profit

FROM books;

d. all of the above

12. Which function can be used to add spaces to a column until it’s a specific width?

a. TRIML

b. PADL

c. LWIDTH

d. none of the above

13. Which of the following SELECT statements returns 30 as the result?

a. SELECT ROUND(24.37, 2) FROM dual;

b. SELECT TRUNC(29.99, 2) FROM dual;

c. SELECT ROUND(29.01, -1) FROM dual;

d. SELECT TRUNC(29.99, -1) FROM dual;

14. Which of the following is a valid SQL statement?

a. SELECT TRUNC(ROUND(125.38, 1), 0) FROM dual;

b. SELECT ROUND(TRUNC(125.38, 0)

FROM dual;

c. SELECT LTRIM(LPAD(state, 5, ' '), 4, -3, "*")

FROM dual;

d. SELECT SUBSTR(ROUND(14.87, 2, 1), -4, 1)

FROM dual;

15. Which of the following functions can’t be used to convert the letter case of a character
string?

a. UPPER

b. LOWER

c. INITIALCAP

d. All of the above can be used for case conversion.

397

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16. Which of the following format elements causes months to be displayed as a three-letter
abbreviation?

a. MMM

b. MONTH

c. MON

d. none of the above

17. Which of the following SQL statements displays a customer’s name in all uppercase
characters?

a. SELECT UPPER('firstname', 'lastname')

FROM customers;

b. SELECT UPPER(firstname, lastname)

FROM customers;

c. SELECT UPPER(lastname, ',' firstname)

FROM customers;

d. none of the above

18. Which of the following functions can be used to display the character string FLORIDA in the
query results whenever FL is entered in the State field?

a. SUBSTR

b. NVL2

c. REPLACE

d. TRUNC

e. none of the above

19. What’s the name of the table provided by Oracle 12c for completing queries that don’t
involve a table?

a. DUMDUM

b. DUAL

c. ORAC

d. SYS

20. If an integer is multiplied by a NULL value, the result is:

a. an integer

b. a whole number

c. a NULL value

d. None of the above—a syntax error message is returned.

398

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hands-On Assignments

To perform the following assignments, refer to the tables in the JustLee Books database.

1. Produce a list of all customer names in which the first letter of the first and last names is in
uppercase and the rest are in lowercase.

2. Create a list of all customer numbers along with text indicating whether the customer has
been referred by another customer. Display the text “NOT REFERRED” if the customer
wasn’t referred to JustLee Books by another customer or “REFERRED” if the customer was
referred.

3. Determine the amount of total profit generated by the book purchased on order 1002.
Display the book title and profit. The profit should be formatted to display a dollar sign and
two decimal places. Take into account that the customer might not pay the full retail price,
and each item ordered can involve multiple copies.

4. Display a list of all book titles and the percentage of markup for each book. The percentage
of markup should be displayed as a whole number (that is, multiplied by 100) with no
decimal position, followed by a percent sign (for example, .2793 = 28%). (The percentage
of markup should reflect the difference between the retail and cost amounts as a percent of
the cost.)

5. Display the current day of the week, hour, minutes, and seconds of the current date setting
on the computer you’re using.

6. Create a list of all book titles and costs. Precede each book’s cost with asterisks so that the
width of the displayed Cost field is 12.

7. Determine the length of data stored in the ISBN field of the BOOKS table. Make sure each
different length value is displayed only once (not once for each book).

8. Using today’s date, determine the age (in months) of each book that JustLee sells. Make
sure only whole months are displayed; ignore any portions of months. Display the book title,
publication date, current date, and age.

9. Determine the calendar date of the next occurrence of Wednesday, based on today’s date.

10. Produce a list of each customer number and the third and fourth digits of his or her zip
code. The query should also display the position of the first occurrence of a 3 in the
customer number, if it exists.

Advanced Challenge

To perform this activity, refer to the tables in the JustLee Books database.
Management is proposing to increase the price of each book. The amount of the increase

will be based on each book’s category, according to the following scale: Computer books, 10%;
Fitness books, 15%; Self-Help books, 25%; all other categories, 3%. Create a list that displays
each book’s title, category, current retail price, and revised retail price. The prices should be
displayed with two decimal places. The column headings for the output should be as follows:
Title, Category, Current Price, and Revised Price. Sort the results by category. If there’s more
than one book in a category, a secondary sort should be performed on the book’s title.

Create a document to show management the SELECT statement used to generate the
results and the results of the statement.

399

Selected Single-Row Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Case Study: City Jail

Note: Make sure you have run the CityJail_8.sql script from Chapter 8. This script makes all
database objects available for completing this case study.

The following list reflects current data requests from city managers. Provide the SQL
statement to satisfy each request. Test the statements and show execution results.

1. List the following information for all crimes that have a period greater than 14 days between
the date charged and the hearing date: crime ID, classification, date charged, hearing date,
and number of days between the date charged and the hearing date.

2. Produce a list showing each active police officer and his or her community assignment,
indicated by the second letter of the precinct code. Display the community description listed
in the following chart, based on the second letter of the precinct code.

Second Letter of
Precinct Code Description

A Shady Grove

B Center City

C Bay Landing

3. Produce a list of sentencing information to include criminal ID, name (displayed in all
uppercase letters), sentence ID, sentence start date, and length in months of the sentence.
The number of months should be shown as a whole number. The start date should be
displayed in the format “December 17, 2009.”

4. A list of all amounts owed is needed. Create a list showing each criminal name, charge ID,
total amount owed (fine amount plus court fee), amount paid, amount owed, and payment
due date. If nothing has been paid to date, the amount paid is NULL. Include only criminals
who owe some amount of money. Display the dollar amounts with a dollar sign and two
decimals.

5. Display the criminal name and probation start date for all criminals who have a probation
period greater than two months. Also, display the date that’s two months from the beginning
of the probation period, which will serve as a review date.

6. An INSERT statement is needed to support users adding a new appeal. Create an INSERT
statement using substitution variables. Note that users will be entering dates in the format
of a two-digit month, a two-digit day, and a four-digit year, such as “12 17 2009.” In
addition, a sequence named APPEALS_ID_SEQ exists to supply values for the Appeal_ID
column, and the default setting for the Status column should take effect (that is, the
DEFAULT option on the column should be used). Test the statement by adding the
following appeal: crime_ID ¼ 25344031, filing date ¼ 02 13 2009, and hearing
date ¼ 02 27 2009.

400

Chapter 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R11
GROUP FUNCTIONS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Differentiate between single-row and multiple-row functions

• Use the SUM and AVG functions for numeric calculations

• Use the COUNT function to return the number of records containing non-
NULL values

• Use COUNT(*) to include records containing NULL values

• Use the MIN and MAX functions with nonnumeric fields

• Determine when to use the GROUP BY clause to group data

• Explain when the HAVING clause should be used

• List the order of precedence for evaluating WHERE, GROUP BY, and
HAVING clauses

• State the maximum depth for nesting group functions

• Nest a group function inside a single-row function

• Calculate the standard deviation and variance of a set of data values
with the STDDEV and VARIANCE functions

• Explain the concept of multidimensional analysis

• Perform enhanced aggregation with GROUPING SETS, CUBE, and
ROLLUP

• Use composite columns and concatenated groupings in grouping
operations

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

Group functions, also called multiple-row functions, return one result per group of rows
processed. Multiple-row functions covered in this chapter include SUM, AVG, COUNT,
MIN, MAX, STDDEV, and VARIANCE. This chapter also explains using the GROUP BY
clause to identify groups of records to process and the HAVING clause to restrict groups
returned in the query results. The last section of the chapter introduces enhanced
aggregation capabilities with the GROUPING SETS, CUBE, and ROLLUP operations.
Table 11-1 gives you an overview of this chapter’s contents.

TABLE 11-1 Group Functions and GROUP BY Extensions Covered in This Chapter

Function and Syntax Description Example

Group Functions

SUM([DISTINCT|
ALL] n)

Returns the sum or total value
of the selected numeric field.
Ignores NULL values.

SELECT SUM(retail-cost)
FROM books;

AVG([DISTINCT|
ALL] n)

Returns the average value of the
selected numeric field. Ignores
NULL values.

SELECT AVG(cost)
FROM books;

COUNT(*[DISTINCT|
ALL] c)

Returns the number of rows con-
taining a value in the identified
field. Rows containing NULL
values in the field aren’t included
in the results. To count rows
containing NULL values, use an
asterisk (*) rather than a field
name.

SELECT COUNT(*)
FROM books;

or
SELECT

COUNT(shipdate)
FROM orders;

MAX([DISTINCT|
ALL] c)

Returns the highest (maximum)
value from the selected field.
Ignores NULL values.

SELECT MAX(customer#)
FROM customers;

MIN([DISTINCT|
ALL] c)

Returns the lowest (minimum)
value from the selected field.
Ignores NULL values.

SELECT MIN(retail-cost)
FROM books;

STDDEV([DISTINCT|
ALL] n)

Returns the standard deviation of
the selected numeric field. Ignores
NULL values.

SELECT STDDEV(retail)
FROM books;

VARIANCE([DISTINCT|
ALL] n)

Returns the variance of the
selected numeric field. Ignores
NULL values.

SELECT VARIANCE(retail)
FROM books;

402

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 11-1 Group Functions and GROUP BY Extensions Covered in This Chapter (continued)

Function and Syntax Description Example

GROUP BY Extensions

GROUPING SETS Enables performing multiple GROUP
BY clauses with a single query.

SELECT name, category,
AVG(retail)

FROM publisher
JOIN books USING
(pubid)

GROUP BY GROUPING SETS
(name, category,
(name,category),());

CUBE Performs aggregations for all possible
combinations of columns included.

SELECT name, category,
AVG(retail)

FROM publisher
JOIN books USING
(pubid)

GROUP BY CUBE(name,
category)

ORDER BY name,
category;

ROLLUP Performs increasing levels of cumu-
lative subtotals, based on the pro-
vided column list.

SELECT name, category,
AVG(retail)

FROM publisher
JOIN books USING
(pubid)

GROUP BY ROLLUP(name,
category)

ORDER BY name,
category;

D A T A B A S E P R E P A R A T I O N

Before attempting to work through the examples in this chapter, make sure you have completed these
two tasks: First, if you haven’t already run the JLDB_Build_8.sql script from Chapter 8, execute this
script to rebuild the JustLee Books database. Second, run the JLDB_Build_11.sql file in the Chapter 11
folder of your student data files to make the necessary modifications to the JustLee Books database.

G R O U P F U N C T I O N S

Multiple-row functions are commonly referred to as group functions because they process
groups of rows. Because these functions return only one result per group of data, they’re
also known as aggregate functions. For example, JustLee Books wants to determine the
average retail price for all books currently in stock. For this task, the retail prices of all

403

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

books are totaled and then divided by the number of books. This is what a group
function—AVG, in this case—does. In other words, the group function processes the 14 rows
in the BOOKS table and produces a single value (the average) as the result; this process is
aggregation. You can also define subsets or groups to use in an aggregate operation. JustLee
Books might need to identify the average retail price for books by category instead of
the overall average. In this case, you can use a GROUP BY clause in the query to define
the groups. If you review the data in the BOOKS table, you’ll notice that the 14 books are
assigned to eight different book categories. Therefore, an aggregate query calculating the
average by category produces eight averages: one for each category. You can also filter
output based on aggregated results by using the HAVING clause. Figure 11-1 shows the
position of the GROUP BY and HAVING clauses in the SELECT statement.

FIGURE 11-1 SELECT statement syntax

The SUM Function
The SUM function is used to calculate the total amount stored in a numeric field for a
group of records. The syntax of the SUM function is SUM([DISTINCT|ALL] n), where n is
a column containing numeric data. The optional DISTINCT keyword instructs Oracle 12c
to include only unique numeric values in its calculation. The ALL keyword instructs
Oracle 12c to include multiple occurrences of numeric values when totaling a field. If the
DISTINCT or ALL keywords aren’t included when using the SUM function, Oracle 12c
assumes the ALL keyword by default and uses all the numeric values in the field when the
query is executed, as shown in Figure 11-2.

FIGURE 11-2 Using the SUM function to calculate order profit

In Figure 11-2, the query calculates the total profit from books sold in order 1007. The
SUM function in the SELECT clause uses the argument (paideach-cost)*quantity

404

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to instruct Oracle 12c to calculate the profit each book item in the order generates before
totaling the profit. The quantity must be included because multiple copies of a book might
be purchased. For example, one customer’s order might be for two copies of Revenge of
Mickey and one copy of Handcranked Computers. Notice that the SELECT clause also
includes a column alias, “Total Profit,” to describe the profit output. As with single-row
functions, if a group function is used in a SELECT clause, the actual function is displayed
as the column header unless you assign a column alias.

The WHERE clause in Figure 11-2 restricts rows used in the calculation to only the
books in order 1007. Because the books ordered and prices paid (the Paideach column)
are stored in the ORDERITEMS table, and book costs are stored in the BOOKS table, the
two tables are joined in the FROM clause. The difference between the Cost and Paideach
values for each book is calculated, then these profits per book are totaled, and finally, the
total profit for the order is returned as a single value of output.

Suppose management wants to determine total sales for one day—April 2, 2009. You
might assume you could simply query the ORDERS table; however, this table doesn’t
include the total “amount due” for an order. The only way to calculate how much a
customer owes for his or her order is to multiply the quantity of books purchased by the
price paid for each book (quantity * paideach). This calculation is commonly referred
to as an “extended price.” The extended prices are then totaled to yield a customer’s total
amount due. (You learn how to determine a customer’s total amount due in “Grouping
Data” later in this chapter.) However, in this case, management wants to know just the
total sales for April 2, 2009. To calculate this total, simply add the extended prices for all
orders placed on that day. The query in Figure 11-3 determines the day’s total sales.

FIGURE 11-3 Using the SUM function to calculate total sales for a specified date

Review the clauses in Figure 11-3. The SELECT clause uses the SUM function to
calculate the extended price for each book ordered. Notice that in the FROM clause, two
tables must be joined. Why? The order date is stored in the ORDERS table and the
quantity ordered and price paid are stored in the ORDERITEMS table. The WHERE
clause is included to restrict the calculation to orders placed on April 2, 2009. So any
rows not having the date April 2, 2009 are eliminated before the SUM function is
calculated.

405

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Keep the following two rules in mind as you work with group functions:

• Use the DISTINCT keyword to include only unique values. The ALL keyword
is the default, and it instructs Oracle 12c to include all values (except nulls).

• All group functions, except the COUNT(*) function, ignore NULL values.
To include NULL values, nest the NVL function inside the group function.

The AVG Function
The AVG function calculates the average of numeric values in a specified column. The
syntax of the AVG function is AVG([DISTINCT|ALL] n), where n is a column containing
numeric data.

For example, if the management of JustLee Books wants to know the average profit
generated by all books in the Computer category, you can use the WHERE clause to
restrict the rows processed to those containing the value COMPUTER in the Category
column. As with the SUM function, the profit for each book is calculated, and then all
profits are totaled. This total is then divided by the number of records containing
non-NULL values in the specified column, as shown in Figure 11-4.

FIGURE 11-4 Using the AVG function to calculate average profit

As the query results show, the average profit of books in the Computer category is
$18.2625. When a query includes division, the resulting display might include more than
two decimal positions. Because management prefers displaying results with only two
decimal positions, the TO_CHAR function is included in the modified query in Figure 11-5
to specify the correct format. When the TO_CHAR function is used on numeric data, any
excess decimals are rounded (not truncated) to the specified number of digits. As shown in
this example, group functions can be nested inside single-row functions.

406

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-5 Embedding a group function in a single-row function

N O T E

If you’re working with the SQL*Plus client tool, the entire column alias might not be displayed in
Figure 11-5’s output. Why? When the TO_CHAR function is included to apply a format argument to
the average profit, numeric values are converted to characters for display purposes. Because the
average profit is then considered a character string, Oracle 12c truncates the column alias to match
the displayed column’s width.

Managing NULL values might be an issue when calculating averages. For example, the
EMPLOYEES table contains the monthly salary and current bonus amount for each
employee. The Bonus column is NULL if no bonus has been earned so far. Review the
employee data in Figure 11-6. Notice that the employee with the last name Stuart has a
NULL value for the Bonus column.

FIGURE 11-6 Data in the EMPLOYEES table

407

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

How does the AVG function handle this value? The calculation ignores the row
containing a NULL value for the Bonus column and uses only the first four rows of data to
perform the calculation. Figure 11-7 shows the average bonus per employee, confirming
that the NULL value is ignored.

FIGURE 11-7 The AVG function ignores NULL values

However, if the NULL value actually represents a bonus of zero, it must be included in
the calculation. In this case, the NVL function covered in Chapter 10 can be used to
indicate that a NULL value should be treated as a zero. The query in Figure 11-8 includes
this modification, and the average amount is lower now. The NVL function is embedded in
the AVG function to substitute a zero value for a NULL before the average is calculated.

FIGURE 11-8 Embedding NVL in a group function

The COUNT Function
Depending on the argument used, the COUNT function can count the records having non-
NULL values in a specified field or count the total records meeting a specific condition,
including those containing NULL values. The syntax of the COUNT function is COUNT
(*[DISTINCT|ALL] c), where c represents a numeric or nonnumeric column. The
query in Figure 11-9 tells Oracle 12c to use the COUNT function to return the number of
distinct categories represented by titles stored in the BOOKS table.

408

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-9 Using the COUNT function with the DISTINCT option

Notice that the DISTINCT keyword precedes the column name in the COUNT
function’s argument instead of being placed directly after the SELECT keyword. This
placement instructs Oracle 12c to count each different value found in the Category
column. If the DISTINCT keyword is entered directly after SELECT, it applies to the entire
COUNT function and is interpreted to mean that only duplicate rows, not duplicate
category values, should be suppressed. However, in Figure 11-9, the COUNT function
returns only one value (or row), so the DISTINCT keyword has no effect on the results.

As shown in Figure 11-10, if the DISTINCT keyword is placed after the SELECT
keyword, Oracle 12c returns a count of how many rows are in the BOOKS table. Why?
Because the DISTINCT keyword applies to the results of the COUNT function—after all
rows containing a value in the Category column have been counted.

FIGURE 11-10 Flawed query: The COUNT function counts all rows with a Category value

However, in this case, management wants to know how many different categories are
represented by books in the BOOKS table. Because the DISTINCT keyword should apply
to the Category column’s contents, the keyword must be placed immediately before the
column name, inside the COUNT function’s argument. As Figure 11-9 showed, the 14 titles
in the BOOKS table represent eight different categories.

Now suppose management asks how many orders are currently outstanding—that is,
they haven’t been shipped to customers. One solution is to print a list of all orders having
a NULL value for the ship date. However, you still need to count the records returned in
the results. Figure 11-11 shows a simpler solution.

409

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-11 Using the COUNT(*) function to include NULL values

T I P

Remember that the equal sign (=) can’t be used when searching for a NULL value. Use the correct
comparison operator, IS NULL, for finding rows containing a NULL value.

When the argument supplied in the COUNT function is an asterisk (*), the entire
record is counted, so a NULL value in one column doesn’t cause the COUNT function to
ignore a row. As Figure 11-11 showed, the WHERE clause restricts the rows that should be
counted to only those without a value in the Shipdate column.

By contrast, look at the flawed query in Figure 11-12, which modifies the query in
Figure 11-11. It illustrates a common error—replacing the asterisk with the Shipdate
column in the COUNT argument.

FIGURE 11-12 Flawed query: The COUNT function specifying a column ignores NULL values

Because the WHERE clause restricts the records counted to only those having a NULL
value in the Shipdate column, the function returns a count of zero. Basically, because the
specified column contains no value, there’s nothing to count. Therefore, whenever NULL
values could affect the COUNT function, you should use an asterisk rather than a column
name as the argument.

410

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The MAX Function
The MAX function returns the largest value stored in the specified column. The syntax of
the MAX function is MAX([DISTINCT|ALL] c), where c can represent any numeric,
character, or date column. The query in Figure 11-13 retrieves the maximum profit
generated by a book.

FIGURE 11-13 Using the MAX function on numeric data

As shown in the results, the largest profit earned by a single book is $41.95. The
problem with this query is that you can’t tell which book is generating the profit.
Therefore, the result isn’t helpful to management, who need at least the title to identify
which book is the most profitable. A common mistake is attempting to add a descriptive
column in the query with aggregation, as shown in Figure 11-14.

FIGURE 11-14 Common aggregation error

411

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the SELECT clause includes both aggregate (MAX (retail-cost)) and
nonaggregate (Title) columns, a GROUP BY clause must be used and all the nonaggregate
columns must be included. As you learn in “Grouping Data” later in this chapter, adding
a GROUP BY clause to this query still produces incorrect results because the query
calculates the profit generated by each book instead of the highest profit of all books.
A subquery must be used to identify both the title and profit of the most profitable book
in inventory. You learn how to work with subqueries in Chapter 12.

The MAX function can also be used with nonnumeric data. With nonnumeric data, the
output shows the first value that occurs when a column is sorted in descending order.
For example, if a column contains dates, the most recent date is considered to have the
highest value (based on its Julian date, discussed in Chapter 10). If the MAX function
is applied to a character column, the letter Z has a higher, or larger, “value” than the
letter A.

Suppose you need to find the book title at the end of a list of book titles sorted
alphabetically in ascending order (A to Z). In other words, the book title has the highest
value of all books in the BOOKS table. As shown in Figure 11-15, when the MAX function
is applied to the Title column, the book title The Wok Way to Cook is displayed.

FIGURE 11-15 Using the MAX function on character data

The MIN Function
In contrast to the MAX function, the MIN function returns the smallest value in a specified
column. As with the MAX function, the MIN function works with any numeric, character,
or date column. The syntax of the MIN function is MIN([DISTINCT|ALL] c), where c
represents any character, numeric, or date column. The MIN function uses the same logic
as the MAX function for numeric and character data, except it returns the smallest value
rather than the largest value.

Figure 11-16 shows using the MIN function to find the book with the earliest
publication date in the BOOKS table. Of course, if you want the most recently published
book, substitute the MAX function.

412

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-16 Using the MIN function on date data

G R O U P I N G D A T A

In Figure 11-4, the SELECT query returns the average profit of all books in the Computer
category. However, suppose the management of JustLee Books wants to know the average
profit for each category of books. One solution is reissuing the query in Figure 11-4 once
for each category, using the WHERE clause to restrict the query to a specific category
each time. Another solution is dividing the records in the BOOKS table into groups, and
then calculating the average for each group—preferably all in one query. For this solution,
you can use with the GROUP BY clause. The syntax is GROUP BY columnname
[, columnname, ...], where columnname is the column used to create the groups
or sets of data.

What happens when you attempt to create this query by adding the Category column
in the SELECT clause without including the GROUP BY clause? In Figure 11-17, the
SELECT clause includes both the nonaggregate column Category and the aggregate
column using the AVG group function. However, the SELECT statement doesn’t include a
GROUP BY clause to specify that groups should be created by using the Category column
values. Therefore, an error message is returned.

413

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-17 Flawed query: Including both aggregate and nonaggregate columns requires a
GROUP BY clause

When using the GROUP BY clause, remember the following:

• If a group function is used in the SELECT clause, any single (nonaggregate)
columns listed in the SELECT clause must also be listed in the GROUP BY
clause.

• Columns used to group data in the GROUP BY clause don’t have to be listed
in the SELECT clause. They’re included in the SELECT clause only to have
these groups identified in the output.

• Column aliases can’t be used in the GROUP BY clause.
• Results returned from a SELECT statement that includes a GROUP BY clause

are displayed in ascending order of the columns listed in the GROUP BY
clause. To have a different sort sequence, use the ORDER BY clause.

The required GROUP BY clause is added in Figure 11-18 to correct the error in
Figure 11-17’s query. As you can see, the nonaggregate column in the SELECT clause
(Category) is included in the GROUP BY clause. When the query is executed, the records
in the BOOKS table are grouped by category, and then the average profit for each
category is calculated. Because the Category column is listed in the SELECT clause, each
category is displayed in the results along with the average profit each category generates.

414

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-18 Adding the GROUP BY clause

Even though adding a GROUP BY clause solves the “not a single-group group
function” error, it’s not always suitable. Keep in mind that GROUP BY forces the
aggregation to occur at the group level. Recall the error returned in Figure 11-14 when the
Title column was added to the MAX function. Figure 11-19 corrects this error by adding a
GROUP BY clause. The statement executes successfully; however, the results don’t
produce the needed data, which is the maximum profit for all books. Adding the GROUP
BY clause means a maximum profit is determined for each group—or book, in this case.

N O T E

More options for adding descriptive data values in aggregation queries are explained in Chapter 12.

415

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-19 Inappropriate use of GROUP BY

A grouping action can include multiple column values. You used the SUM function
earlier to calculate the total sales for an order. The SUM function is a group function and,
therefore, returns one total for all rows processed. What if you need a list of all orders and
the total amount due by customer and order? This task is perfect for the GROUP BY
clause.

For example, if the Billing Department requests a list of the amount due from each
customer for each order, use the GROUP BY clause to group rows for each order, and
then use the SUM function to calculate the extended price for the items ordered and
return the total amount due for each order. Figure 11-20 shows the SQL statement to
create this list.

When the statement is executed, Oracle 12c displays each order, the customer
number of the person who placed the order, and the total amount due. Because the
SELECT clause in Figure 11-20 includes the Customer# and Order# columns, these
columns must also be listed in the GROUP BY clause. You might wonder whether
including the order number in the query is necessary. Suppose a customer placed two
orders recently. If the order number isn’t included in the query, the SQL statement
returns the total amount due from each customer, not the amount due from a customer
for each order. The customer number is included to identify who placed each order.

416

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-20 Calculate the total amount due by each customer and order

R E S T R I C T I N G A G G R E G A T E D O U T P U T

The HAVING clause is used to restrict the groups returned by a query. If you need to
use a group function to restrict groups, you must use the HAVING clause because the
WHERE clause can’t contain group functions. Although the WHERE clause restricts the
records the query processes, the HAVING clause specifies which groups are displayed
in the results. The syntax of the HAVING clause is HAVING groupfunction
comparisonoperator value.

Suppose you want to display book categories with an average profit of more than
$15.00. Figure 11-21 shows the query to perform this task. The HAVING clause serves
as the WHERE clause for aggregated data. Referring to the syntax of the HAVING clause,
notice that groupfunction is AVG, comparisonoperator is >, and value is 15.

417

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-21 Using a HAVING clause to restrict which groups are displayed

The GROUP BY clause specifies calculating the average profit for each category. Then
the HAVING clause checks each category average to see whether it’s greater than $15.00.
In Figure 11-21, only four categories return an average profit of more than $15.00. As
with the WHERE clause, the logical operators NOT, AND, and OR can be used instead of
comparison operators in the HAVING clause to join group conditions, if necessary.

Keep in mind that a WHERE clause can still be used to restrict specific rows in the
query. In Figure 11-22, the WHERE clause restricts the records that are processed to only
those with a publication date after January 1, 2005. The GROUP BY clause groups the
records meeting this publication date restriction by the category to which each book is
assigned. The HAVING clause restricts the group data displayed to categories with an
average profit greater than $15.00.

FIGURE 11-22 Using the WHERE, GROUP BY, and HAVING clauses

418

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When a SELECT statement includes all three clauses, the order in which they’re
evaluated is as follows:

• The WHERE clause
• The GROUP BY clause
• The HAVING clause

In essence, the WHERE clause filters the data before grouping, and the HAVING
clause filters the groups after the grouping occurs.

For another example, after the Billing Department receives the order totals list
created in Figure 11-20, the department manager asks for another list of the amount
due—but only for orders with a total amount due greater than $100.00. Because output is
to be restricted based on the results of the SUM function, which is a group function, a
HAVING clause is required. The query shown previously in Figure 11-20 could be
modified by adding HAVING SUM(quantity*paideach) > 100. As shown in Figure 11-23,
only six orders have a total amount due greater than $100.

FIGURE 11-23 Using a HAVING clause to restrict grouped output

Including Category column filters in a HAVING clause is a common issue in data-
filtering queries. For example, suppose you need to generate a list of each book category
along with the average profit, as you did earlier. This query needs to include the following
data filters:

• Show only book categories with an average profit greater than $15.00.
• Include only the categories Computer, Children, and Business.

The first filtering task should be done with a HAVING clause because it places a
condition on an aggregated value. The second filtering task should be handled with a
WHERE clause at the row level to include only the book rows in the specified categories
before the aggregation is performed. Figure 11-24 shows the correct query.

419

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-24 Filtering correctly with the WHERE and HAVING clauses

However, many new SQL users make the mistake of placing all filtering actions in
the HAVING clause. Figure 11-25 shows the same query with all filtering action in the
HAVING clause.

FIGURE 11-25 Filtering incorrectly with the HAVING clause

Notice that the same results are produced. The query can perform the category
filtering in the HAVING clause, after the aggregation is performed, because the Category
value is available as a grouping value. However, this method is quite inefficient and
considered poor SQL programming practice. The statement must process all rows in the
BOOKS table with the aggregated calculation and then eliminate categories. By using a
WHERE clause instead, the rows not needed are eliminated at the beginning of the query
process, before the aggregation.

420

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N E S T I N G F U N C T I O N S

When group functions are nested, the inner function is resolved first, as with single-row
functions. The result of the inner function is passed as input for the outer function. Unlike
single-row functions that have no restriction on the number of nesting levels, group
functions can be nested only to a depth of two. As you saw in Figure 11-25, group
functions can be nested inside single-row functions (AVG embedded in a TO_CHAR
function). In addition, single-row functions can be nested inside group functions, as shown
previously in Figure 11-8 (NVL embedded in an AVG function). You can also nest a group
function inside another group function.

Suppose you need to calculate the average sales amount per order. To do this, you
need to calculate the total sales by order, and then compute the average of these amounts.
In Figure 11-26, the SUM function is nested inside the AVG function to determine the
average total amount for an order. First, the GROUP BY clause groups all records, based
on the Order# column. Second, the SUM function calculates the total order amount for
each group or order. Third, the AVG function calculates the average of the total order
amounts calculated by the SUM function. The resulting output is the average total amount
due for orders stored in the ORDERS table.

FIGURE 11-26 Nesting group functions

T I P

Don’t forget to include two closing parentheses at the end of the function in the SELECT clause. The
first parenthesis closes the SUM function, and the second closes the AVG function.

N O T E

A TO_CHAR function could be used to format the results with two decimal places, as in previous
examples.

421

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Keep in mind that group functions can be nested to only two levels, and the query
must include a GROUP BY clause. The inner group function creates the aggregated result
for each group. The outer group function performs an aggregation on the grouped results.

S T A T I S T I C A L G R O U P F U N C T I O N S

Oracle 12c provides statistical group functions to perform calculations for data analysis.
In most organizations, marketing and accounting tasks require using data analysis to
detect sales trends, price fluctuations, and so on. Oracle 12c provides functions to support
basic statistical calculations, such as standard deviation and variance. Although these
calculations are easy to do in Oracle 12c, most people need training in statistical analysis
to interpret the calculations’ results. This chapter is intended to give you an overview of
the calculations’ purposes, not to train you in statistical analysis. The statistical functions
covered in this section are STDDEV and VARIANCE.

The STDDEV Function
The STDDEV function calculates the standard deviation for a specified field. A standard
deviation calculation determines how close each value in a group of numbers is to
the mean, or average, of the group. The syntax of the STDDEV function is
STDDEV([DISTINCT|ALL] n), where n represents a numeric column.

The SELECT statement in Figure 11-27 displays each book category in the JustLee
Books database, the average profit for each category, the count (number of books in each
category), and the standard deviation of the profit for each category.

FIGURE 11-27 Using the STDDEV function

422

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now take a look at how to interpret these results. For the value calculated by the
standard deviation to be useful, it must be compared to the calculated “average profit” for
each category. For example, the average profit for books in the Computer category is
$18.26. However, are most books in the category close to this average? Or do most books
generate a small profit (perhaps only $1) and one book generates a large profit (perhaps
$20)—which inflates the average? The standard deviation is a statistical approximation of
how many books in a certain category fall within a certain range around the average.

The STDDEV function is based on the concept of normal distribution, which means
that if you input many data values; they tend to cluster around an average value. The
basic assumption is that as you move closer to the average value, more data values are
clustered around the average. However, some values might be extreme and, therefore, be
much larger or smaller than the average. Of course, each extreme data value affects the
group’s average. For example, calculating the average of 5, 6, 7, and 100 results in a larger
value than if the 100 isn’t included. When performing statistical analysis, the standard
deviation is calculated to determine how closely data matches the average value for the
group.

In a normal distribution, you can expect to find 68% of books within one standard
deviation (plus or minus) of the average and 95% of books within two standard deviations
(plus or minus) of the average. In simpler terms, again using the example in Figure 11-27,
68% of books in the Computer category have a profit between $7.03 ($18.26 – $11.23) and
$29.49 ($18.26 þ $11.23). The standard deviation can give management a quick picture
of the range of profit values for books in a particular category, without having to examine
each book—a time-consuming task if the category includes thousands of books.

T I P

Notice that some categories in Figure 11-27 have a standard deviation of zero. If the STDDEV function
processes only one record per group, as shown in the COUNT column, the result is always zero.

The VARIANCE Function
The VARIANCE function determines how widely data is spread in a group. The variance of
a group of records is calculated based on the minimum and maximum values for a
specified field. If the data values are clustered together closely, the variance is small.
However, if the data contains extreme values (unusually high or low values), the variance
is larger. The syntax for the VARIANCE function is VARIANCE([DISTINCT|ALL] n),
where n represents a numeric field.

The query in Figure 11-28 lists the categories for all books in the BOOKS table, the
profit variance of each category, and (for comparison purposes) the lowest and highest
profit in each category.

423

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-28 Using the VARIANCE function

As with the standard deviation, if a group of data consists of only one value (the
Business, Fitness, Literature, and Self Help categories, for example), the calculated
variance is zero. However, unlike standard deviation, variance isn’t measured with the
same units (for example, dollars) as the source data used for the calculation.

To interpret the results of a VARIANCE function, you must look at how large or small
the value is. For example, the Cooking category has a smaller variance than in other
categories, meaning that profits for books in the Cooking category are clustered tightly
together (that is, the profit doesn’t cover a wide range of values). In the Cooking category,
notice that the profit range for all books is $2.30: $9.75 (maximum) – $7.45 (minimum).
On the other hand, the Family Life category has the largest profit range of all the
categories. This data should throw up a warning flag to management that some books
might generate little profit, and others might return a large profit. Therefore, the average
profit for books in the Family Life category shouldn’t be the sole basis for decision making.

E N H A N C E D A G G R E G A T I O N F O R R E P O R T I N G

Oracle provides extensions to the GROUP BY clause that allow aggregating across multiple
dimensions or generating increasing levels of subtotals with a single SELECT statement.
A dimension is a term for describing any category used in analyzing data, such as time,
geography, and product line. Each dimension could contain different levels of aggregation.
For example, a time dimension might include aggregation by month, quarter, and year.
Multidimensional analysis involves data aggregated across more than one dimension.
A cube of data, as shown in Figure 11-29, is a common analogy used to help you
visualize data with many dimensions.

424

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Product line

G
eo

gr
ap

hy

Time

FIGURE 11-29 A multidimensional data cube

Producing aggregated results across multiple dimensions or increasing levels of
aggregation in one dimension requires a series of aggregate queries joined with a UNION
operation. However, this method isn’t efficient. The GROUPING SETS expression is a
much simpler method that achieves the same goal. It uses a single scan to compute all
aggregates, which typically improves query performance.

N O T E

The advanced aggregation extensions of GROUP BY discussed in this section are widely used in online
analytical processing (OLAP) and data warehousing.

A basic Microsoft Excel® pivot table can help demonstrate the need for
multidimensional data. A pivot table allows dragging dimensions of data to different areas
on a spreadsheet to display different aggregations. For example, Figure 11-30 shows a
pivot table with two dimensions: Publisher and Category. This table analyzes the total
number of available books.

425

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Two dimensions
used on same row

Analyzing count
of books

This pivot table requires totals by:
1. Publisher & Category
2. Publisher
3. Grand Total

FIGURE 11-30 A pivot table with two dimensions on a row

The analysis requires three levels of aggregation, listed in Figure 11-30. What happens
when you drag the Category dimension from the row area to the column area? Figure 11-31
shows the results of this action; four levels of aggregation are required now.

One dimension
used on row

One dimension
used on
column

This pivot table requires totals by:
1. Publisher & Category (intersection of column & row)
2. Publisher
3. Category
4. Grand Total

FIGURE 11-31 A pivot table with one row and one column dimension

This type of analysis is possible by using multidimensional data or a data cube, which
stores data with all possible aggregations for quicker and more versatile data analysis.

426

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The GROUPING SETS Expression
The GROUPING SETS expression is the component on which the other GROUP BY
extensions, ROLLUP and CUBE, are built. With this expression, you can use a single query
statement to perform multiple GROUP BY clauses. Figure 11-32 shows the GROUPING
SETS expression added to the GROUP BY clause. This single query produces the average
retail price for books in four groupings: 1) publisher (the Name column) and category,
2) category, 3) publisher, and 4) overall average. Notice that a WHERE clause is used to
filter data to make output shorter for the examples in this section. You could remove
the WHERE clause filtering and perform the operations on all rows.

The column arguments in parentheses after the GROUPING SETS expression indicate
the different GROUP BY operations to be performed—four different groupings, in this
example. The () column argument listed last indicates an overall total aggregation. The
NULL values in the column output indicate a subtotal row. Without the GROUPING SETS
expression, this task would require combining results of four separate queries with a
UNION operation, as shown in Figure 11-33.

Name

Overall total

Name and
Category

Category

FIGURE 11-32 Using a GROUPING SETS expression in a GROUP BY clause

427

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-33 Using a UNION operation to perform the same action as the GROUPING SETS
expression

The GROUPING SETS expression gives you control over the specific aggregations
to be performed. As mentioned, two extensions of the GROUP BY clause are used for
additional GROUPING SETS actions: The CUBE extension performs cross-tabular
aggregations, and the ROLLUP extension calculates subtotals.

The CUBE Extension
The CUBE extension of GROUP BY instructs Oracle to perform aggregations for all
possible combinations of the specified columns. Figure 11-34 shows a statement using
the CUBE option to perform all aggregate combinations on two columns: Name
(publisher name) and Category.

428

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-34 Using the CUBE extension of GROUP BY

This output matches all the aggregations performed in Figure 11-32 with the
GROUPING SETS expression. If you need only a subset of the four aggregate levels
calculated, you must use the GROUPING SETS expression because the CUBE extension
always performs all aggregation levels.

Identifying subtotal rows is helpful in labeling, sorting, and restricting output. You can
add a GROUPING function to the CUBE extension to identify subtotal rows in the results.
This function returns a 1 to identify a row that displays a subtotal for a column, as shown
in Figure 11-35.

429

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-35 The GROUPING function returns a 1 to identify subtotal rows

In addition, the results of the GROUPING function could be used in a DECODE
operation to label subtotal rows, as shown in Figure 11-36.

430

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-36 Combining DECODE and the GROUPING function to label subtotal rows

The ROLLUP Extension
The ROLLUP extension of GROUP BY calculates cumulative subtotals for the specified
columns. If multiple columns are indicated, subtotals are performed for each column in
the argument list, except the one on the far right. A grand total is also calculated. Figure
11-37 shows a ROLLUP operation on the same two columns used in the CUBE operation:
Name and Category. Three levels of increasing aggregation are performed: 1) combination
of Name and Category columns, 2) Name subtotal, and 3) grand total.

You can also do a partial ROLLUP by including only a subset of the columns in the
GROUP BY clause. For example, if you need only subtotals by Category and each Name in
each Category, the statement in Figure 11-38 uses a partial ROLLUP for this task. In this
example, the column outside the ROLLUP operation, Category, is considered the
aggregate value. A subtotal is calculated for the aggregate value as well as for each
unique value of the ROLLUP column in the aggregate value.

431

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Name subtotals

Grand total

FIGURE 11-37 Using the ROLLUP extension of GROUP BY

FIGURE 11-38 Using a partial ROLLUP

432

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using parentheses on a collection of columns creates a composite column, which
is treated as a single unit in grouping operations. First, review a ROLLUP operation
containing three columns, as shown in Figure 11-39. This ROLLUP operation performs
four levels of increasing aggregation: 1) Name, Mth (the column alias for the combination
of month and year), and Category, 2) Name and Mth, 3) Name, and 4) grand total.

Name, Mth,
Category subtotal

Name,
Mth subtotal

Name subtotal

Grand total

FIGURE 11-39 Using three columns in a ROLLUP operation

Next, modify this statement to combine Mth and Category as a composite column.
Figure 11-40 shows the ROLLUP operation with the composite column, which is created
by placing parentheses around the Mth and Category columns in the ROLLUP arguments.

433

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Name, Mth,
Category
subtotal

Name
subtotal

Grand total

FIGURE 11-40 Using a composite column in a ROLLUP operation

Compared with Figure 11-39’s operation without a composite column, one less level of
aggregation is performed. The aggregation level of Name and Mth is no longer performed
because the Mth column isn’t considered a separate aggregation value in the ROLLUP
operation. This ROLLUP operation is considered to have only two arguments: Name and
the composite column of Mth and Category combined.

Combinations of groupings can be generated by using concatenated groupings. A
concatenated grouping operation is created by listing multiple grouping sets in the
grouping operation. Say you need accumulated aggregate totals of a book count and the
average retail value of books by two different groupings: 1) Name and Category and 2) Mth
and Yr. Figure 11-41 shows a concatenated grouping that includes two ROLLUP
operations.

434

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ROLLUP
Name and
Category

ROLLUP
Mth and Yr

Duplicate
grand total

FIGURE 11-41 Using concatenated groupings

As grouping operations become more complex, sometimes duplicate grouping results
are generated, as you can see in the duplicate grand totals in the last two rows of Figure
11-41’s output. To eliminate duplicate grouping results, the GROUP_ID function is
available. It returns a value of 1 for duplicate output rows. Figure 11-42 adds the
GROUP_ID function to the previous statement.

435

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-42 Using GROUP_ID to eliminate duplicate grouping results

Notice that the repeated grand total row has a GROUP_ID of 1. To eliminate the
duplicate row in the output, add the HAVING clause HAVING GROUP_ID () ¼ 0 to the
query. The GROUP_ID value can be checked for any grouping level. The example in
Figure 11-42 uses () as the GROUP_ID argument, which represents the grand total
grouping level.

T I P

Partial groupings, composite columns, and concatenated groupings can also be performed with
GROUPING SETS and CUBE operations, using the same technique shown with the ROLLUP examples

436

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Pattern Matching
Oracle 12c introduces new pattern matching features targeted to analyze patterns or
trends of a specific column of data across many rows. For example, a company may wish
to determine the sales trends for a specific product by identifying the upward sales periods
and downward sales periods. The MATCH_RECOGNIZE clause offers many options to
identify the measures and patterns to analyze. This is an advanced query technique
beyond the scope of this book, however, a brief example is provided to demonstrate the
capabilities available through this mechanism.

A new table named WEBHITS, which stores the total number of daily page visits by
product page, will be used for this example. Review the data in the table by executing the
query below. Notice the WPAGE column identifies the product page and the TOTAL
column stores the total page hits for that day. Scan the TOTAL column to detect the
upward and downward periods for the page hit counts.

SELECT wpage, whdate, total

FROM webhits

ORDER BY wpage, whdate;

The query displayed in Figure 11-43 demonstrates using the MATCH_RECOGNIZE clause
to determine the peaks and valleys in terms of Web hit traffic by product page. Notice that
the first row pinpoints the first set of peaks and valley of page hits. The number of page
hits is on the rise until 11/11/14 and then continues to fall until 11/21/14. At this point, the
page hits continue to rise again until 12/01/14. Each row represents a set of peaks and
valleys for the product page. This information may typically be used as source data for a
line chart to easily visualize the up and down trends identified.

12c

437

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11-43 Pattern matching using the MATCH_RECOGNIZE clause

N O T E

Further explore the available pattern matching features by visiting the documentation area of the Oracle
Web site.

438

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• The AVG, SUM, STDDEV, and VARIANCE functions are used only with numeric
fields.

• The COUNT, MAX, and MIN functions can be applied to any datatype.
• The AVG, SUM, MAX, MIN, STDDEV, and VARIANCE functions ignore NULL

values. The COUNT(*) function counts records containing NULL values. To
include NULL values in other group functions, use the NVL function.

• By default, the AVG, SUM, MAX, MIN, COUNT, STDDEV, and VARIANCE
functions include duplicate values. To include only unique values, use the
DISTINCT keyword.

• The GROUP BY clause is used to divide query data into groups.
• If a SELECT clause contains both a nonaggregate column name and a group

function, the column name must also be included in a GROUP BY clause.
• The HAVING clause is used to restrict groups, based on aggregated results.
• Group functions can be nested to a depth of only two. The inner function is always

performed first, using the specified grouping. The results of the inner function are
used as input for the outer function.

• The STDDEV and VARIANCE functions are used to perform statistical analysis on
a set of data values.

• GROUPING SETS operations can be used to perform multiple GROUP BY
aggregations with a single query.

• The CUBE extension of GROUP BY calculates aggregations for all possible
combinations or groupings of specified columns.

• The ROLLUP extension of GROUP BY calculates increasing levels of
accumulated subtotals for the specified column list.

• Composite columns and concatenated groupings can be used in GROUPING
SETS, CUBE, and ROLLUP operations.

• The GROUP_ID function helps eliminate duplicate grouping results.
• Pattern matching options enable the analysis of trends in data for a set of rows.

Chapter 11 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Function and Syntax Description Example

Group Functions

SUM([DISTINCT|
ALL] n)

Returns the sum or total value of the
selected numeric field. Ignores NULL
values.

SELECT SUM(retail-cost)
FROM books;

439

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Function and Syntax Description Example

Group Functions

AVG([DISTINCT|
ALL] n)

Returns the average value of the
selected numeric field. Ignores NULL
values.

SELECT AVG(cost)
FROM books;

COUNT(*[DISTINCT|
ALL] c)

Returns the number of rows containing
a value in the identified field. Rows
containing NULL values in the field
aren’t included in the results. To count
all rows, including those with NULL
values, use an asterisk (*) rather than a
field name.

SELECT COUNT(*)
FROM books;

or
SELECT COUNT(shipdate)
FROM orders;

MAX([DISTINCT|
ALL] c)

Returns the highest (maximum) value
from the selected field. Ignores NULL
values.

SELECT MAX(customer#)
FROM customers;

MIN([DISTINCT|
ALL] c)

Returns the lowest (minimum) value
from the selected field. Ignores NULL
values.

SELECT MIN(retail-cost)
FROM books;

STDDEV([DISTINCT|
ALL] n)

Returns the standard deviation of the
selected numeric field. Ignores NULL
values.

SELECT STDDEV(retail)
FROM books;

VARIANCE([DISTINCT|
ALL] n)

Returns the variance of the selected
numeric field. Ignores NULL values.

SELECT VARIANCE(retail)
FROM books;

Clauses

GROUP BY
columnname
[, columnname,...]

Divides data into sets or groups, based
on the contents of specified columns.

SELECT AVG(cost)
FROM books
GROUP BY category;

HAVING
group function
comparisonoperator
value

Restricts the groups displayed in query
results.

SELECT AVG(cost)
FROM books
GROUP BY category
HAVING AVG(cost) > 21;

GROUP BY Extensions

GROUPING SETS Enables performing multiple GROUP
BY operations with a single query.

SELECT name, category,
AVG(retail)

FROM publisher
JOIN books USING(pubid)
GROUP BY GROUPING SETS
(name, category,
(name,category), ());

440

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide (continued)

Function and Syntax Description Example

GROUP BY Extensions

CUBE Performs aggregations for all
possible combinations of
columns included.

SELECT name, category,
AVG(retail)

FROM publisher
JOIN books USING(pubid)
GROUP BY CUBE(name,

category)
ORDER BY name, category;

ROLLUP Performs increasing levels of
cumulative subtotals, based on
the specified column list.

SELECT name, category,
AVG(retail)

FROM publisher
JOIN books USING(pubid)
GROUP BY ROLLUP(name,

category)
ORDER BY name, category;

Review Questions

1. Explain the difference between single-row and group functions.

2. Which group function can be used to perform a count that includes NULL values?

3. Which clause can be used to restrict or filter the groups returned by a query based on a
group function?

4. Under what circumstances must you include a GROUP BY clause in a query?

5. In which clause should you include the condition "pubid ¼ 4" to restrict the rows
processed by a query?

6. In which clause should you include the condition MAX(cost) > 39 to restrict groups
displayed in the query results?

7. What’s the basic difference between the ROLLUP and CUBE extensions of the GROUP BY
clause?

8. What’s the maximum depth allowed when nesting group functions?

9. In what order are output results displayed if a SELECT statement contains a GROUP BY
clause and no ORDER BY clause?

10. Which clause is used to restrict the records retrieved from a table? Which clause restricts
groups displayed in the query results?

441

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multiple Choice

To answer these questions, refer to the tables in the JustLee Books database.

1. Which of the following statements is true?

a. The MIN function can be used only with numeric data.

b. The MAX function can be used only with date values.

c. The AVG function can be used only with numeric data.

d. The SUM function can’t be part of a nested function.

2. Which of the following is a valid SELECT statement?

a. SELECT AVG(retail-cost)

FROM books

GROUP BY category;

b. SELECT category, AVG(retail-cost)

FROM books;

c. SELECT category, AVG(retail-cost)

FROM books

WHERE AVG(retail-cost) > 8.56

GROUP BY category;

d. SELECT category, AVG(retail-cost) Profit

FROM books

GROUP BY category

HAVING profit > 8.56;

3. Which of the following statements is correct?

a. The WHERE clause can contain a group function only if the function isn’t also listed in
the SELECT clause.

b. Group functions can’t be used in the SELECT, FROM, or WHERE clauses.

c. The HAVING clause is always processed before the WHERE clause.

d. The GROUP BY clause is always processed before the HAVING clause.

4. Which of the following is not a valid SQL statement?

a. SELECT MIN(pubdate)

FROM books

GROUP BY category

HAVING pubid = 4;

b. SELECT MIN(pubdate)

FROM books

WHERE category = 'COOKING';

c. SELECT COUNT(*)

FROM orders

WHERE customer# = 1005;

442

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

d. SELECT MAX(COUNT(customer#))

FROM orders

GROUP BY customer#;

5. Which of the following statements is correct?

a. The COUNT function can be used to determine how many rows contain a NULL value.

b. Only distinct values are included in group functions, unless the ALL keyword is
included in the SELECT clause.

c. The HAVING clause restricts which rows are processed.

d. The WHERE clause determines which groups are displayed in the query results.

e. none of the above

6. Which of the following is a valid SQL statement?

a. SELECT customer#, order#, MAX(shipdate-orderdate)

FROM orders

GROUP BY customer#

WHERE customer# = 1001;

b. SELECT customer#, COUNT(order#)

FROM orders

GROUP BY customer#;

c. SELECT customer#, COUNT(order#)

FROM orders

GROUP BY COUNT(order#);

d. SELECT customer#, COUNT(order#)

FROM orders

GROUP BY order#;

7. Which of the following SELECT statements lists only the book with the largest profit?

a. SELECT title, MAX(retail-cost)

FROM books

GROUP BY title;

b. SELECT title, MAX(retail-cost)

FROM books

GROUP BY title

HAVING MAX(retail-cost);

c. SELECT title, MAX(retail-cost)

FROM books;

d. none of the above

8. Which of the following is correct?

a. A group function can be nested inside a group function.

b. A group function can be nested inside a single-row function.

c. A single-row function can be nested inside a group function.

443

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

d. a and b

e. a, b, and c

9. Which of the following functions is used to calculate the total value stored in a specified
column?

a. COUNT

b. MIN

c. TOTAL

d. SUM

e. ADD

10. Which of the following SELECT statements lists the highest retail price of all books in the
Family category?

a. SELECT MAX(retail)

FROM books

WHERE category = 'FAMILY';

b. SELECT MAX(retail)

FROM books

HAVING category = 'FAMILY';

c. SELECT retail

FROM books

WHERE category = 'FAMILY'

HAVING MAX(retail);

d. none of the above

11. Which of the following functions can be used to include NULL values in calculations?

a. SUM

b. NVL

c. MAX

d. MIN

12. Which of the following is not a valid statement?

a. You must enter the ALL keyword in a group function to include all duplicate values.

b. The AVG function can be used to find the average calculated difference between two
dates.

c. The MIN and MAX functions can be used on any type of data.

d. all of the above

e. none of the above

13. Which of the following SQL statements determines how many total customers were referred
by other customers?

a. SELECT customer#, SUM(referred)

FROM customers

GROUP BY customer#;

444

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. SELECT COUNT(referred)

FROM customers;

c. SELECT COUNT(*)

FROM customers;

d. SELECT COUNT(*)

FROM customers

WHERE referred IS NULL;

Use the following SELECT statement to answer questions 14–18:

1 SELECT customer#, COUNT(*)

2 FROM customers JOIN orders USING(customer#)

3 WHERE orderdate > '02-APR-09'

4 GROUP BY customer#

5 HAVING COUNT(*) > 2;

14. Which line of the SELECT statement is used to restrict the number of records the query
processes?

a. 1

b. 3

c. 4

d. 5

15. Which line of the SELECT statement is used to restrict groups displayed in the query
results?

a. 1

b. 3

c. 4

d. 5

16. Which line of the SELECT statement is used to group data stored in the database?

a. 1

b. 3

c. 4

d. 5

17. Because the SELECT clause contains the Customer* column, which clause must be
included for the query to execute successfully?

a. 1

b. 3

c. 4

d. 5

445

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18. The COUNT(*) function in the SELECT clause is used to return:

a. the number of records in the specified tables

b. the number of orders placed by each customer

c. the number of NULL values in the specified tables

d. the number of customers who have placed an order

19. Which of the following functions can be used to determine the earliest ship date for all
orders recently processed by JustLee Books?

a. COUNT function

b. MAX function

c. MIN function

d. STDDEV function

e. VARIANCE function

20. Which of the following is not a valid SELECT statement?

a. SELECT STDDEV(retail)

FROM books;

b. SELECT AVG(SUM(retail))

FROM orders

NATURAL JOIN orderitems NATURAL JOIN books

GROUP BY customer#;

c. SELECT order#, TO_CHAR(SUM(retail), '999.99')

FROM orderitems JOIN books USING(isbn)

GROUP BY order#;

d. SELECT title, VARIANCE(retail-cost)

FROM books

GROUP BY pubid;

Hands-On Assignments

To perform these assignments, refer to the tables in the JustLee Books database.

1. Determine how many books are in the Cooking category.

2. Display the number of books with a retail price of more than $30.00.

3. Display the most recent publication date of all books sold by JustLee Books.

4. Determine the total profit generated by sales to customer 1017. Note: Quantity should be
reflected in the total profit calculation.

5. List the retail price of the least expensive book in the Computer category.

6. Determine the average profit generated by orders in the ORDERS table. Note: The total
profit by order must be calculated before finding the average profit.

446

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Determine how many orders have been placed by each customer. Do not include in the
results any customer who hasn’t recently placed an order with JustLee Books.

8. Determine the average retail price of books by publisher name and category. Include only
the categories Children and Computer and the groups with an average retail price greater
than $50.

9. List the customers living in Georgia or Florida who have recently placed an order totaling
more than $80.

10. What’s the retail price of the most expensive book written by Lisa White?

Advanced Challenge

To perform this activity, refer to the tables in the JustLee Book database.
JustLee Books has a problem: Book storage space is filling up. As a solution,

management is considering limiting the inventory to only those books returning at least
a 55% profit. Any book returning less than a 55% profit would be dropped from inventory
and not reordered.

This plan could, however, have a negative impact on overall sales. Management fears
that if JustLee stops carrying the less profitable books, the company might lose repeat
business from its customers. As part of management’s decision-making process, it wants to
know whether current customers purchase less profitable books frequently. Therefore,
management wants to know how many times these less profitable books have been
purchased recently.

Determine which books generate less than a 55% profit and how many copies of these
books have been sold. Summarize your findings for management, and include a copy of the
query used to retrieve data from the database tables.

Case Study: City Jail

Note: Make sure you have run the CityJail_8.sql script from Chapter 8. This script makes all
database objects available to complete this case study.

The city’s Crimes Analysis unit has submitted the following data requests. Provide the SQL
statements to satisfy these requests. Test the statements and show the query results.

1. Show the average number of crimes reported by an officer.

2. Show the total number of crimes by status.

3. List the highest number of crimes committed by a person.

4. Display the lowest fine amount assigned to a crime charge.

5. List criminals (ID and name) who have multiple sentences assigned.

6. List the total number of crime charges successfully defended (guilty status assigned) by
precinct. Include only precincts with at least seven guilty charges.

7. List the total amount of collections (fines and fees) and the total amount owed by crime
classification.

447

Group Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Use single queries to address the following requests:

9. List the total number of charges by crime classification and charge status. Include a grand
total in the results.

10. Perform the same task as in Question #8 and add the following: a) a subtotal by each crime
classification and b) a subtotal for each charge status. Provide two different queries to
accomplish this task.

11. Perform the same task as in Question #8 and add a subtotal by each crime classification.
Provide two different queries to accomplish this task.

448

Chapter 11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R12
SUBQUERIES AND MERGE
STATEMENTS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Determine when using a subquery is appropriate

• Identify which clauses can contain subqueries

• Distinguish between an outer query and a subquery

• Use a single-row subquery in a WHERE clause

• Use a single-row subquery in a HAVING clause

• Use a single-row subquery in a SELECT clause

• Distinguish between single-row and multiple-row comparison operators

• Use a multiple-row subquery in a WHERE clause

• Use a multiple-row subquery in a HAVING clause

• Use a multiple-column subquery in a WHERE clause

• Create an inline view by using a multiple-column subquery in a FROM
clause

• Compensate for NULL values in subqueries

• Distinguish between correlated and uncorrelated subqueries

• Nest a subquery inside another subquery

• Use a subquery in a DML action

• Process multiple DML actions with a MERGE statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

Suppose that the management of JustLee Books requests a list of every computer book
that has a higher retail price than the book Database Implementation. In previous
chapters, you would have followed a procedure including two separate queries: 1) Query
the database to determine the retail price of Database Implementation, and then
2) create a second SELECT statement to find the titles of all computer books retailing for
more than Database Implementation. In this chapter, you learn how to use an alternative
approach, called a subquery, to get the same output by using a single SQL statement.
A subquery is a nested query—one complete query inside another query.

The subquery’s output can consist of a single value (a single-row subquery), several
rows of values (a multiple-row subquery), or even multiple columns of data (a multiple-
column subquery). This chapter addresses each type of subquery. In addition, the final
section returns to the topic of DML and introduces advanced DML actions, including
subqueries and the MERGE statement. With the MERGE statement, you can conditionally
process multiple DML actions with a single SQL statement. Table 12-1 gives you an
overview of this chapter’s contents.

TABLE 12-1 Topics Covered in This Chapter

Subquery Description

Single-row subquery Returns to the outer query one row of results consisting of one column

Multiple-row subquery Returns to the outer query more than one row of results

Multiple-column subquery Returns to the outer query more than one column of results

Correlated subquery References a column in the outer query and executes the subquery once
for every row in the outer query

Uncorrelated subquery Executes the subquery first and passes the value to the outer query

DML subquery Uses a subquery to determine the rows affected by the DML action

MERGE statement Conditionally processes a series of DML statements

D A T A B A S E P R E P A R A T I O N

Before attempting to work through the examples in this chapter, run the JLDB_Build_12.sql script to
make the necessary additions to the JustLee Books database. You should have already executed the
JLDB_Build_8.sql script as instructed in Chapter 8.

450

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

S U B Q U E R I E S A N D T H E I R U S E S

As described earlier, getting an answer to a query sometimes requires a multistep
operation. First, you must create a query to determine a value you don’t know but that’s
stored in the database. This first query is the subquery. The subquery’s results are passed
as input to the Outer query (also called the parent query). The outer query incorporates
this value into its calculations to determine the final output.

Although subqueries are used most commonly in the WHERE or HAVING clause of a
SELECT statement, at times using a subquery in the SELECT or FROM clause is
appropriate. When the subquery is nested in a WHERE or HAVING clause, the results it
returns are used as a condition in the outer query. Any type of subquery (single-row,
multiple-row, or multiple-column) can be used in the WHERE, HAVING, or FROM clause
of a SELECT statement. As you’ll see, the only type of subquery that can be used in a
SELECT clause is a single-row subquery.

N O T E

The indentation in Figure 12-3’s subquery and in other figures in this chapter is used only to improve
readability; it isn’t required by Oracle 12c.

Keep the following rules in mind when working with any type of subquery:

• A subquery must be a complete query in itself—in other words, it must have
at least a SELECT and a FROM clause.

• A subquery, except one in the FROM clause, can’t have an ORDER BY clause.
If you need to display output in a specific order, include an ORDER BY
clause as the outer query’s last clause.

• A subquery must be enclosed in parentheses to separate it from the outer
query.

• If you place a subquery in the outer query’s WHERE or HAVING clause, you
can do so only on the right side of the comparison operator.

S I N G L E - R O W S U B Q U E R I E S

A single-row subquery is used when the outer query’s results are based on a single,
unknown value. Although this query type is formally called “single-row,” the name implies
that the query returns multiple columns—but only one row—of results. However, a single-
row subquery can return only one row of results consisting of only one column to the
outer query. Therefore, this textbook refers to the output of a single-row subquery as a
single value.

Single-Row Subquery in a WHERE Clause
To see how subqueries work, you can compare creating multiple queries, which you’ve
studied in previous chapters, with creating one query containing a subquery. In this

451

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

chapter’s introduction, management requested a list of all computer books with a higher
retail price than the book Database Implementation. As shown in Figure 12-1, the first
step is to create a query to determine the book’s retail price, which is $31.40.

FIGURE 12-1 Query to determine the retail price of Database Implementation

To determine which computer books retail for more than $31.40, you must issue a
second query stating the cost of Database Implementation in the WHERE clause
condition, as shown in Figure 12-2. The WHERE clause includes the retail price of
Database Implementation, which the query in Figure 12-1 found. The category condition
also restricts records to those only in the Computer category.

FIGURE 12-2 Query for computer books costing more than $31.40

You can get these same results with a single SQL statement by using a single-row
subquery. A single-row subquery is appropriate in this example because 1) to get the
results you need, an unknown value that’s stored in the database must be found, and
2) only one value should be returned from the inner query (the retail price of Database
Implementation).

452

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 12-3, a single-row subquery is substituted for the cost > 31.4 condition of
the SELECT statement in Figure 12-2. This subquery is enclosed in parentheses to
distinguish it from the outer query’s clauses.

FIGURE 12-3 A single-row subquery

In Figure 12-3, the inner query is executed first, and this query’s result, a single value
of 31.4, is passed to the outer query. The outer query is then executed, and all books
having a retail price greater than $31.40 and belonging to the Computer category are
listed in the output. Using a single SQL statement prevents the need for user intervention
to accomplish the task. In addition, the subquery enables this query to always reflect the
current price of the Database Implementation book.

N O T E

Using a subquery in a FROM clause has a specific purpose, as you learn later in “Multiple-Column
Subquery in a FROM Clause.”

Operators indicate to Oracle 12c whether you’re creating a single-row subquery or a
multiple-row subquery. The single-row operators are ¼, >, <, >¼, <¼, and <>. Although
other operators, such as IN, are allowed, single-row operators instruct Oracle 12c that only
one value is expected from the subquery. If more than one value is returned, the SELECT
statement fails, and you get an error message.

Suppose management makes another request: the title of the most expensive book
sold by JustLee Books. The MAX function covered in Chapter 11 handles this task. You
might be tempted to create the query shown in Figure 12-4.

453

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-4 Flawed query: attempt to determine the book with the highest retail value

You encountered this problem when working with aggregate functions in Chapter 11.
Recall this rule when working with group functions: If a nonaggregate field is listed with a
group function in the SELECT clause, the field must also be listed in a GROUP BY clause.
In this example, however, adding a GROUP BY clause doesn’t make sense. If a GROUP BY
clause containing the Title column is added, each book would be its own group because
each title is different. In other words, the results would be the same as using SELECT
title, retail in the query.

Therefore, to retrieve the title of the most expensive book, you can use a subquery to
determine the highest retail price of any book. This retail price can then be returned to an
outer query and displayed in the results.

As shown in Figure 12-5, the most expensive book sold by JustLee Books is Painless
Child-Rearing. The books retail price is included in the query output, but it isn’t required.
In this case, only one book matches the highest price of $89.95; however, multiple book
titles could be displayed if more than one book matched the high price.

T I P

The query statement serving as the subquery should be created and executed first by itself. In this way,
you can verify that the query produces the expected results before embedding it in another query as a
subquery.

454

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-5 Query to determine the title of the most expensive book

C A U T I O N

If an error message is returned for the query in Figure 12-5, make sure the subquery contains four
parentheses—one set around the retail argument for the MAX function and one set around the
subquery.

You can include multiple subqueries in a SELECT statement. For example, suppose
management needs to know the title of all books published by the publisher of Big Bear
and Little Dove that generate more than the average profit returned by all books sold by
JustLee Books. In this case, two values are unknown: the identity of the publisher of Big
Bear and Little Dove and the average profit of all books. How might you create a query
that extracts these values? The SELECT statement in Figure 12-6 uses two separate
subqueries in the WHERE clause to find the information.

Notice that both subqueries in Figure 12-6 are complete because they contain a
minimum of one SELECT clause and one FROM clause. Because they are subqueries,
each one is enclosed in parentheses. The first subquery determines the publisher of Big
Bear and Little Dove and returns the result to the first condition of the WHERE clause
(WHERE pubid ¼). The second subquery finds the average profit of all books sold by
JustLee Books by using the AVG function, and then passes this value to the second
condition of the WHERE clause (AND retail-cost >) to be compared against the profit
for each book. Because the two conditions of the outer query’s WHERE clause are
combined with the AND logical operator, both values returned by the subqueries must be
met for a book to be listed in the outer query’s output. In this example, the query finds
two books published by the publisher of Big Bear and Little Dove that return more than
the average profit.

455

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-6 SELECT statement with two single-row subqueries

Single-Row Subquery in a HAVING Clause
As mentioned, you can include a subquery in a HAVING clause. A HAVING clause is used
when the group results of a query need to be restricted based on some condition. If a
subquery’s result must be compared with a group function, you must nest the inner query
in the outer query’s HAVING clause.

For example, if management needs a list of all book categories returning a higher
average profit than the Literature category, you would follow these steps:

1. Calculate the average profit for all Literature books.
2. Calculate the average profit for each category.
3. Compare the average profit for each category with the average profit for the

Literature category.

To perform these steps, you use the AVG function and include a subquery in the
HAVING clause, as shown in Figure 12-7. The results are restricted to groups having a
higher average profit than the Literature category. Because the subquery’s results are
applied to groups of data, nesting the subquery in the HAVING clause is necessary. (Recall
from Chapter 11 that filtering by aggregate data occurs in the HAVING clause, not the
WHERE clause.)

456

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-7 Single-row subquery nested in a HAVING clause

As Figure 12-7 shows, the subquery in a HAVING clause must follow the same
guidelines as for WHERE clauses: It must include at least a SELECT clause and a FROM
clause, and it must be enclosed in parentheses.

Single-Row Subquery in a SELECT Clause
A single-row subquery can also be nested in the outer query’s SELECT clause. In this
case, the value the subquery returns is available for every row of output the outer query
generates. Typically, this technique is used to perform calculations with a value
produced from a subquery. For example, suppose management wants to compare the
price of each book in inventory against the average price of all books in inventory.
The query output must show each book’s price and the amount above or below the
average.

You can accomplish this task by using a subquery in a SELECT clause that
calculates the average retail price of all books. When a single-row subquery is included
in a SELECT clause, the subquery’s results are displayed in the outer query’s output. To
include a subquery in a SELECT clause, you use a comma to separate the subquery
from the table columns, as though you were listing another column. In fact, you can
even give the subquery results a column alias. First, use the query in Figure 12-8 to
verify that the same average amount the subquery returns is available for each row in
the parent query. The TO_CHAR function is used to round the average amount to two
decimal places.

457

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-8 Single-row subquery in a SELECT clause

To calculate the average price of all books in inventory, the outer query’s SELECT
clause includes the Title and Retail columns as well as the subquery in the column list.
The average calculated by the subquery is displayed for every book included in the output.
The column alias, Overall Average, is assigned to the subquery’s results to indicate the
column’s contents. If a column alias isn’t used, the actual subquery shows as the column
heading, which is somewhat unattractive and not very descriptive. Having the subquery in
the SELECT clause enables management to compare each book’s retail price to the
average retail price for all books by looking at just one list.

Can this subquery be used in a calculation to determine the difference between each
book price and the average? Absolutely. Simply move the subquery into a calculation, as
shown in Figure 12-9, to calculate the difference between the retail price and the average
price.

458

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-9 Use a subquery in a calculation in the SELECT clause

T I P

Users learning to work with subqueries often don’t have much confidence in the output when the
subquery is in a WHERE clause because the value the subquery generates isn’t displayed. However, if
the subquery used in the WHERE clause is also included in the SELECT clause, the value the single-
row subquery generates can be compared against the outer query’s final output. This comparison is an
easy way to validate the output. The subquery is removed from the SELECT clause after validation to
generate the requested results. Validation gives you more confidence in the final results and reduces the
risk of distributing erroneous data. However, this method works only for single-row subqueries. For other
types of subqueries, you must execute the subquery as a separate SELECT statement to determine the
values it generates because a SELECT clause can process only single-row subqueries.

M U L T I P L E - R O W S U B Q U E R I E S

Multiple-row subqueries are nested queries that can return more than one row of results
to the parent query. Multiple-row subqueries are used most commonly in WHERE and
HAVING clauses. The main rule to keep in mind when working with multiple-row

459

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

subqueries is that you must use multiple-row operators. If a single-row operator is used
with a subquery that returns more than one row of results, Oracle 12c returns an error
message, and the SELECT statement fails. Valid multiple-row operators include IN, ALL,
and ANY, discussed in the following sections.

The IN Operator
Of the three multiple-row operators, the IN operator is used most often. Figure 12-10
shows a multiple-row subquery with this operator. This query identifies books with a retail
value matching the highest retail value for any book category.

FIGURE 12-10 Multiple-row subquery with the IN operator

The IN operator in this subquery indicates that the records the outer query processes
must match one of the values the subquery returns. (In other words, it creates an OR
condition.) The order of execution in Figure 12-10 is as follows:

1. The subquery determines the price of the most expensive book in each
category.

2. The maximum retail price in each category is passed to the WHERE clause of
the outer query (a list of values).

3. The outer query compares each book’s price to the prices generated by the
subquery.

4. If a book’s retail price matches one of the prices returned by the
subquery, the book’s title, retail price, and category are displayed in the
output.

460

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The ALL and ANY Operators
The ALL and ANY operators can be combined with other comparison operators to treat a
subquery’s results as a set of values instead of single values. Table 12-2 summarizes the
use of the ALL and ANY operators with other comparison operators.

TABLE 12-2 ALL and ANY Operator Combinations

Operator Description

>ALL More than the highest value returned by the subquery

<ALL Less than the lowest value returned by the subquery

<ANY Less than the highest value returned by the subquery

>ANY More than the lowest value returned by the subquery

¼ANY Equal to any value returned by the subquery (same as IN)

The ALL operator is fairly straightforward:

• If the ALL operator is combined with the “greater than” symbol (>), the outer
query searches for all records with a value higher than the highest value
returned by the subquery (in other words, more than ALL the values returned).

• If the ALL operator is combined with the “less than” symbol (<), the outer
query searches for all records with a value lower than the lowest value
returned by the subquery (in other words, less than ALL the values returned).

To examine the impact of using the ALL comparison operator, look at the query in Figure
12-11, which will be used later as a subquery. It returns the retail prices for two books in the
Cooking category. The lowest value returned is $19.95, and the highest value is $28.75.

FIGURE 12-11 Retail price of books in the Cooking category

Suppose you want to know the titles of all books having a retail price greater than the
most expensive book in the Cooking category. One approach is using the MAX function in

461

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a subquery to find the highest retail price. Another approach is using the > ALL operator, as
shown in Figure 12-12.

FIGURE 12-12 Using the > ALL operator

The Oracle 12c strategy for processing the SELECT statement in Figure 12-12 is as
follows:

• The subquery passes the retail prices of the two books in the Cooking
category ($19.95 and $28.75) to the outer query.

• Because the > ALL operator is used in the outer query, Oracle 12c is
instructed to list all books with a retail price higher than the largest value
returned by the subquery ($28.75).

In this example, nine books have a higher price than the most expensive book in the
Cooking category.

T I P

You could get the same results as in Figure 12-12 by using the MAX function in the subquery. In this
case, a single value for the highest priced book in the Cooking category is returned from the subquery,
and a multiple-row operator isn’t required.

Similarly, the < ALL operator is used to determine records with a value less than the
lowest value returned by a subquery. Therefore, if you need to find books priced lower than
the least expensive book in the Cooking category, first formulate a subquery that identifies

462

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

books in the Cooking category. Then you can compare the retail price of books in the
BOOKS table against the values returned by a subquery by using the < ALL operator.

As in the previous query, the subquery in Figure 12-13 first finds the two books in the
Cooking category (shown in Figure 12-11). The retail prices of these books ($19.95 and
$28.75) are then passed to the outer query. Because $19.95 is the lowest retail price of all
books in the Cooking category, only books with a retail price lower than $19.95 are
displayed in the output. In this case, Oracle 12c found only one book with a retail price
lower than the least expensive book in the Cooking category: Big Bear and Little Dove.

FIGURE 12-13 Using the < ALL operator

By contrast, the < ANY operator is used to find records with a value less than the
highest value returned by a subquery. To determine which books cost less than the most
expensive book in the Cooking category, evaluate the subquery’s results by using the
< ANY operator, as shown in Figure 12-14.

FIGURE 12-14 Using the < ANY operator

463

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The outer query finds four books with a retail price lower than the most expensive
book in the Cooking category. Notice, however, that the results also include Cooking with
Mushrooms, a book in the Cooking category. Because the outer query compares the
records to the highest value in the Cooking category, any other book in the Cooking
category is also displayed in the query results. To eliminate any book in the Cooking
category from appearing in the output, simply add the condition AND category <>

’COOKING’ to the outer query’s WHERE clause.
The > ANY operator is used to return records with a value greater than the lowest

value returned by the subquery. In Figure 12-15, 12 records have a retail price greater
than the lowest retail price returned by the subquery ($19.95).

FIGURE 12-15 Using the > ANY operator

The ¼ANY operator works the same way as the IN comparison operator. For example,
the query in Figure 12-16 searches for the titles of books purchased by customers who
also purchased the book with the ISBN 0401140733. Because this book could have
appeared on more than one order, and the query is supposed to identify all these orders,
the ¼ANY operator is used.

464

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-16 Using the ¼ANY operator

This query would have yielded the same results if the IN operator had been used
instead of the ¼ANY operator. The DISTINCT keyword in the outer query’s SELECT
clause is included because, as mentioned, a title could have been ordered by more than
one customer and would have multiple listings in the output.

T I P

If you don’t get the same results as in Figure 12-16, make sure the closing parenthesis for the subquery
is placed before the last line beginning with the AND keyword, which is part of the outer query.

Also, notice in Figure 12-16 that the columns needed to complete the outer query are
in two different tables: ORDERITEMS and BOOKS. A join is required in the outer query to
combine the rows of these two tables. Because the columns needed to perform the inner
query are contained only in the ORDERITEMS table, no join is required in the subquery.

N O T E

Another operator, EXISTS, is available to handle multiple-row subqueries and is discussed later in
“Correlated Subqueries.”

Multiple-Row Subquery in a HAVING Clause
So far, you have seen multiple-row subqueries in a WHERE clause, but they can also be
included in a HAVING clause. When the subquery’s results are compared to grouped data
in the outer query, the subquery must be nested in a HAVING clause in the outer query.

465

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, you need to determine whether any customer’s recently placed order
has a total amount due greater than the total amount due for every order placed recently
by customers in Florida. Getting this output requires determining the total amount due for
each order placed by a Florida customer, and then comparing these totals with every
order total. The order totals for Florida customers can be calculated in a subquery, but
because one value is returned for each order, you need a multiple-row subquery. These
totals need to be compared with the total amount due for each order, which requires the
outer query to group all items in the ORDERITEMS table by the Order# column.
Therefore, the outer query must use a HAVING clause because the comparison is based on
grouped data.

As shown in Figure 12-17, the structure for using a multiple-row subquery in a
HAVING clause is the same as using the subquery in a WHERE clause.

FIGURE 12-17 Multiple-row subquery in a HAVING clause

Single-row and multiple-row subqueries might look the same in terms of the
subqueries themselves; however, a single-row subquery can return only one data value,
whereas a multiple-row subquery can return several values. Therefore, if you execute a
subquery that returns more than one data value and the comparison operator is intended
to be used only with single-row subqueries, you get an error message and the query isn’t
executed, as shown in Figure 12-18.

466

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-18 Flawed query: using a single-row operator for a multiple-row subquery

M U L T I P L E - C O L U M N S U B Q U E R I E S

Now that you’ve examined multiple-row subqueries, this section explores multiple-column
subqueries. A multiple-column subquery returns more than one column to the outer
query and can be listed in the outer query’s FROM, WHERE, or HAVING clause.

Multiple-Column Subquery in a FROM Clause
When a multiple-column subquery is used in the outer query’s FROM clause, it creates
a temporary table that can be referenced by other clauses of the outer query. This
temporary table is more formally called an inline view. The subquery’s results are treated
like any other table in the FROM clause. If the temporary table contains grouped data, the
grouped subsets are treated as separate rows of data in a table.

N O T E

Views are covered in Chapter 13.

467

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Suppose you need a list of all books in the BOOKS table that have a higher-
than-average selling price compared with other books in the same category. For each
book, you need to display the title, retail price, category, and average selling price of books
in that category. Because the average selling price is based on grouped data, this query
presents a problem. How might you solve it?

In Figure 12-19, a multiple-column subquery is nested in the outer query’s FROM
clause. The subquery creates a temporary table, including a column for the category and a
column for the category average. The subquery determines the categories in the BOOKS
table and the average selling price of every book in each category.

FIGURE 12-19 Multiple-column subquery in a FROM clause

However, how do you display the title of each book in the BOOKS table along with its
retail price, its category, and the average price of all books in the same category? The
BOOKS table contains the data for each book, and the subquery creates a temporary table
that stores the grouped data. Notice in Figure 12-19 that the table alias “a” has been
assigned to the subquery’s results, so the columns in the subquery (Category and
Cataverage) can be referenced by other clauses in the outer SELECT statement.
Essentially, this alias assigns a table name to the subquery’s results.

The query is referencing, or finding, data from two different tables, and one just
happens to be created at runtime by the subquery. The tables have been joined by using
the traditional approach—the outer query’s WHERE clause. The problem with the
traditional approach is that both tables contain a column called Category, which creates
an ambiguity problem if the Category column is referenced anywhere in the outer query.
To avoid this problem, the Category column needs a column qualifier to identify which
table contains the category data to be displayed. Therefore, table aliases are used in the
SELECT and WHERE clauses to identify the table containing the column being referenced.

468

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As shown in Figure 12-20, the query could have also been created by using an ANSI
JOIN operation supported by Oracle 12c. Because both tables (BOOKS and the temporary
table created by the subquery) contain a column named Category, the tables are linked in
the FROM clause with a join using the Category field. Because column qualifiers aren’t
allowed with the JOIN statement, the temporary table created by the subquery isn’t
assigned a table alias.

FIGURE 12-20 Using a join with a multiple-column subquery in the FROM clause

Multiple-Column Subquery in a WHERE Clause
When a multiple-column subquery is included in the outer query’s WHERE or HAVING
clause, the outer query uses the IN operator to evaluate the subquery’s results. The
subquery’s results consist of more than one column of results.

The syntax of the outer WHERE clause is WHERE (columnname, columnname, . . .)
IN subquery. Keep these rules in mind:

• Because the WHERE clause contains more than one column name, the
column list must be enclosed in parentheses.

• Column names listed in the WHERE clause must be in the same order as
they’re listed in the subquery’s SELECT clause.

T I P

Double-check that the column list in the outer query’s WHERE clause is enclosed in parentheses and is
in the same order as the column list in the subquery’s SELECT clause.

469

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 12-10 shown earlier, the subquery returned the price of the most expensive
book in each category, and the outer query generated a list of the title, retail price, and
category of books matching the retail price returned by the subquery. The overall result of
the outer query was to display the title, retail price, and category for the most expensive
book in each category. However, the query results could be misleading because a book
retail value that matches a MAX value of any category is included in the output. So books
in the output might be matches of the category MAX value of a different category than
their own.

To create a query that specifically lists the most expensive books in each category; a
multiple-column subquery is more suitable. Look at the example in Figure 12-21. The
subquery finds the highest retail value in each category and passes both the category
names and retail prices to the outer query.

FIGURE 12-21 Multiple-column subquery in a WHERE clause

N O T E

Although a multiple-column subquery can be used in the outer query’s HAVING clause, it’s usually used
only when analyzing extremely large sets of grouped numeric data. Generally, this method is discussed
in more advanced courses focusing on quantitative methods.

470

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N U L L V A L U E S

As with everything else, NULL values present a challenge when using subqueries. Because a
NULL value is the same as the absence of data, a NULL can’t be returned to an outer query
for comparison purposes; it’s not equal to anything, not even another NULL. Therefore, if a
NULL value is passed from a subquery, the results of the outer query are “no rows selected.”
Although the statement doesn’t fail (it doesn’t generate an Oracle 12c error message), you
don’t get the expected results, as you can see from the example in Figure 12-22.

FIGURE 12-22 Flawed query: NULL results from a subquery

In Figure 12-22, the user is trying to determine whether the customer who referred
customer 1005 has referred any other customers to JustLee Books. The problem is that
no rows are listed as output from the outer query. Are no rows listed because the
customer who referred customer 1005 hasn’t referred any other customers or because
customer 1005 wasn’t referred to JustLee Books (in which case the Referred column is
NULL)? If no one referred customer 1005, should the outer query’s output be a list of all
customers who weren’t referred by other customers?

In this case, customer 1005 wasn’t referred by any other customer; therefore, the
Referred column is NULL. A NULL value is passed to the outer query, so no matches are
found because the condition is WHERE referred = NULL. The IS NULL operator is
required to identify NULL values in a conditional clause.

What if customer 1005 wasn’t referred by another customer and you want a list of all cus-
tomers who weren’t referred by other customers? As always, it’s the NVL function to the rescue.

NVL in Subqueries
If it’s possible for a subquery to return a NULL value to the outer query for comparison,
the NVL function should be used to substitute an actual value for the NULL. However,
keep these two rules in mind:

• The substitution of the NULL value must occur for the NULL value in both
the subquery and the outer query.

• The value substituted for the NULL value must be one that couldn’t possibly
exist anywhere else in that column.

471

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12-23 uses the same premise as Figure 12-22 and shows an example of these two
rules. The NVL function is included whenever the Referred column is referenced—in both
the subquery and the outer query. In this example, a zero is substituted for a NULL value.

Because the value in the Referred column is actually a customer number in the
CUSTOMERS table, and no customer has the customer number zero, substituting a zero for
the NULL value doesn’t accidentally make a NULL record equivalent to a non-NULL record.

FIGURE 12-23 Using the NVL function to handle NULL values

When you substitute a value for a NULL, make sure no other record contains the
substituted value. For example, use ZZZ for a customer name; in a date field, use a date
that absolutely couldn’t exist in the database.

IS NULL in Subqueries
Although passing a NULL value from a subquery to an outer query can be challenging,
searches for NULL values are allowed in a subquery. As with regular queries, you can still
search for NULL values with the IS NULL comparison operator.

For example, you need to find the title of all books that have been ordered but haven’t
shipped yet. The subquery in Figure 12-24 identifies the orders that haven’t shipped—in
other words, the ship date is NULL.

472

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-24 Using IS NULL in a subquery

As shown, the order number for each order is passed to the outer query, and the title
for each book is displayed. The DISTINCT keyword is used to prevent duplicate titles from
being listed. Although the subquery searches for records containing NULL values, it’s the
Order# column that’s passed to the outer query. The Order# column is the primary key
for the ORDERS table, and no NULL values can exist in this field. Therefore, there’s no
need to use the NVL function in this example.

C O R R E L A T E D S U B Q U E R I E S

So far you have studied mostly uncorrelated subqueries: The subquery is executed first,
its results are passed to the outer query, and then the outer query is executed. In a
correlated subquery, Oracle 12c uses a different procedure to execute a query. A
correlated subquery references one or more columns in the outer query, and the EXISTS
operator is used to test whether the relationship or link is present.

Figure 12-25 shows an example of identifying books that have been ordered recently.
Although this query is a multiple-row subquery, execution of the entire query requires
processing each row in the BOOKS table to determine whether it also exists in the
ORDERITEMS table.

Oracle 12c executes the outer query first, and when it encounters the outer query’s
WHERE clause, it’s evaluated to determine whether that row is TRUE (whether it exists in
the ORDERITEMS table). If it is TRUE, the book’s title is displayed in the results. The outer
query is executed again for the next book in the BOOKS table and compared to the
ORDERITEMS table’s contents, and so on, for each row of the BOOKS table. In other words,
a correlated subquery is processed, or executed, once for each row in the outer query.

How does Oracle 12c distinguish between an uncorrelated and a correlated subquery?
Simply speaking, if a subquery references a column from the outer query, it’s a correlated

473

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-25 Correlated subquery

subquery. Notice that in the subquery in Figure 12-25, the WHERE clause specifies the
ISBN column of the BOOKS table. Because the BOOKS table isn’t included in the
subquery’s FROM clause, it’s forced to use data processed by the outer query (the ISBN of
books processed during that execution of the outer query). With an uncorrelated
subquery, the subquery is executed first, and then the results are passed to the outer
query. Because the subquery is used to identify every ISBN stored in the ORDERITEMS
table, each ISBN listed in the table is returned to the outer query.

A join operation could also be used to tackle this query. Notice that in Figure 12-26, a
join is used to identify the titles of books that have been ordered recently. Keep in mind
that nonmatching rows are dropped from the results automatically in an equijoin.

Only partial results are included in Figure 12-26 because the output includes
duplicates. Adding DISTINCT suppresses duplicates in the output so that it matches the
results of the correlated subquery in Figure 12-25.

N O T E

You’ll continue to discover that several techniques are available to solve query requests. Being familiar with
different options is beneficial, as some techniques execute more efficiently in certain situations. Tuning is
an advanced topic beyond this textbook’s scope; however, the concept is introduced in Appendix E.

474

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-26 Using a join rather than a correlated subquery

N E S T E D S U B Q U E R I E S

You can nest subqueries inside the FROM, WHERE, or HAVING clauses of other
subqueries. In Oracle 12c, subqueries in a WHERE clause can be nested to a depth of 255
subqueries, and there’s no depth limit when subqueries are nested in a FROM clause.
When nesting subqueries, you might want to use the following strategy:

• Determine exactly what you’re trying to find—in other words, the goal of the
query.

• Write the innermost subquery first.
• Next, look at the value you can pass to the outer query. If it isn’t the value

the outer query needs (for example, it references the wrong column), analyze
how you need to convert the data to get the correct rows. If necessary, use
another subquery between the outer query and the nested subquery. In some
cases, you might need to create several layers of subqueries to link the value
the innermost subquery returns to the value the outer query needs.

The most common reason for nesting subqueries is to create a chain of data. For
example, you need to find the name of the customer who has ordered the most books
from JustLee Books (not including multiple quantities of the same book) on one order.
Figure 12-27 shows a query that returns these results.

475

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A

B

C

FIGURE 12-27 Nested subqueries

Here are the steps for creating the query in Figure 12-27:

1. The goal of the query is to count the number of items placed on each order
and identify the order—or orders, in case of a tie—with the most items. The
nested subquery identified by A in Figure 12-27 finds the highest count of
books in any order.

2. The value of the highest count of items ordered is then passed to the outer
subquery, B.

3. The outer subquery, B, is then used to identify which orders have the same
number of items as the highest number of items that the innermost
subquery, A, found.

4. After the order numbers have been identified, they are then passed to the
outer query, C, which determines the customer number and name of the
person who placed the orders. In this case, two customers tied for placing an
order with the most items.

The statement uses the IN operator in the outer query’s WHERE clause because the
subquery, B, might return multiple rows.

T I P

Don’t forget to include the extra set of parentheses for the nested group functions in the innermost
subquery; if you do, you’ll get an error message.

476

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

S U B Q U E R Y F A C T O R I N G C L A U S E

The WITH clause is an alternative to using subqueries that offers potential improvements
in statement readability and processing efficiency. This option is also referred to as a
subquery factoring clause and allows a subquery to be defined at the beginning of a
SELECT statement which may be referenced multiple times within the query if needed.

An example query to create a list of employees including the number of employees
assigned to the same department, the manager’s name and the number of employees in
the manager’s department will demonstrate how to use the WITH clause instead of
subqueries. Review the code below and note how the same subquery is repeated in the
FROM clause to address the counts for both the employee’s and manager’s departments.

SELECT e.lname Emp_Lastname,
e.deptno e_dept,
d1.dcount edept_count,
m.lname manager_name,
m.deptno mdept,
d2.dcount mdept_count

FROM employees e,
(SELECT deptno, COUNT(*) AS dcount
FROM employees
GROUP BY deptno) d1,
employees m,
(SELECT deptno, COUNT(*) AS dcount

FROM employees
GROUP BY deptno) d2
WHERE e.deptno = d1.deptno
AND e.mgr = m.empno
AND m.deptno = d2.deptno

AND e.mgr = ‘7839’;

The results displayed in Figure 12-28 list the department and employee count
information for the three employees who are assigned to manager 7839. The output
includes the employee counts for the same department, as well as the manager’s
department, which are both retrieved by subqueries in the FROM clause. Again, note that
the two subqueries are identical; however, the join conditions are controlling which
department rows are being used in the COUNT operation.

FIGURE 12-28 Query results for department and employee counts

477

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

How is this same task accomplished using the WITH clause? The code below
accomplishes the same query results while using the WITH clause to define the employee
count by department operation. Notice that “dcount” is used as an alias to reference the
COUNT operation results from the query defined in the WITH clause. The main query
follows the WITH clause and references the dcount item throughout the statement to use
the department count operation.

WITH dcount AS
(SELECT deptno, COUNT(*) AS dcount
FROM employees
GROUP BY deptno)

SELECT e.lname Emp_Lastname,
e.deptno e_dept,
d1.dcount edept_count,
m.lname manager_name,
m.deptno mdept,
d2.dcount mdept_count

FROM employees e,
dcount d1,
employees m,
dcount d2

WHERE e.deptno = d1.deptno
AND e.mgr = m.empno
AND m.deptno = d2.deptno

AND e.mgr = ‘7839’;

Since the COUNT operation in this example is being referenced multiple times to
complete the query task, the WITH clause simplifies the statement in that the same
subquery does not need to be defined multiple times within the statement. In addition,
Oracle 12c may reuse the result set of the subquery in the WITH clause leading to improved
processing performance. In situations where the same subquery is referenced multiple times
in a query statement, the processing efficiency of the WITH clause should be evaluated.

N O T E

Oracle 12c introduced the ability to now include PL/SQL functions and procedures in the WITH clause.

D M L A C T I O N S U S I N G S U B Q U E R I E S

In Chapter 5, you discovered you can insert data from existing tables into another table
by using a subquery in the INSERT statement. You can also perform UPDATE and
DELETE statements by using subqueries. For example, employee Sue Stuart needs her
bonus set to equal the average bonus of all employees. The SET clause needs a subquery
to determine the current average bonus of all employees, as shown in Figure 12-29.

478

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 12-29 An UPDATE statement using a subquery

A subquery can also be used in the WHERE clause of a DELETE statement to
determine which rows are deleted, based on the value the subquery returns. For example,
the DEPARTMENT table contains a list of all departments initially established for JustLee
Books; however, some departments might never have been used. JustLee management
wants to eliminate any departments that currently have no employees. A subquery
identifying all departments with employees can be used to accomplish this task with a
DELETE statement, as shown in Figure 12-30. Notice that the WHERE clause uses the
NOT IN operator to ensure that departments with employees aren’t deleted.

FIGURE 12-30 A DELETE statement using a subquery

M E R G E S T A T E M E N T S

With a MERGE statement, a series of DML actions can occur with a single SQL statement.
The DML statements INSERT, UPDATE, and DELETE were covered in Chapter 5. However,
conditionally updating one data source based on another wasn’t covered. Now that you have
an understanding of more complex SQL statements, this topic can be introduced.

In a data warehousing environment, often you need to conditionally update one table
based on another table. For example, a BOOKS table might be used in the JustLee Books
production system for recording orders. Any book price changes, category changes, and

479

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

new book additions are entered in this table. Another copy of the BOOKS table could be
kept for querying and reporting. Many organizations don’t want to slow down the
production system, so copies of tables are maintained on separate servers to handle
querying and reporting requests. In this situation, the tables used for reporting need
periodic updating. The MERGE statement assists in this task, as it can compare two data
sources or tables and determine which rows need updating and which need inserting.

Take a look at an example involving two BOOKS tables. A table named BOOKS_l serves as
the reporting table, and BOOKS_2 serves as the production table. In this case, the BOOKS_2
table is the input source, and BOOKS_l is the target. If a book exists in both tables, an UPDATE
is needed to capture any changes in retail price or category assignments. If a book is in the
BOOKS_2 table but not in the BOOKS_l table, an INSERT is needed to add the book to
BOOKS_l. First, query both tables to review the existing data, as shown in Figure 12-31.

Updates

Inserts

FIGURE 12-31 Current contents of the BOOKS_1 and BOOKS_2 tables

The first three rows of the BOOKS_2 table, shown in Figure 12-31, are used to update
the existing rows of the BOOKS_l table because these three match based on ISBN. The
last two rows of BOOKS_2 are added (using an INSERT) to the BOOKS_l table, as these
books don’t currently exist in this table.

Figure 12-32 shows a MERGE statement that conditionally performs the UPDATES
and INSERTS.

480

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

No change

Retail and
Category updated

Retail
updated

Row
added

FIGURE 12-32 MERGE statement with UPDATE and INSERT

The following explains each part of this MERGE statement:

• MERGE INTO books_l a: The BOOKS_l table is to be changed, and a table
alias of “a” is assigned to this table.

• USING books_2 b: The BOOKS_2 table provides the data to update or insert
into BOOKS_l, and a table alias of “b” is assigned to this table.

• ON (a.isbn ¼ b.isbn): The rows of the two tables are joined or matched
based on ISBN.

• WHEN MATCHED THEN: If a row match based on ISBN is discovered, execute
the UPDATE action in this clause. The UPDATE action instructs Oracle 12c
to modify only two columns (Retail and Category).

• WHEN NOT MATCHED THEN: If no match is found based on the ISBN (a book
exists in BOOKS_2 that isn’t in BOOKS_l), perform the INSERT action in this
clause.

N O T E

A MERGE statement containing an UPDATE and an INSERT clause is also called an UPSERT
statement.

481

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Including both WHEN MATCHED and WHEN NOT MATCHED isn’t required. If only a
particular DML operation is needed, you include only the corresponding clause.

Next, execute a ROLLBACK statement so that the BOOKS_l data is set to the original
three rows before performing the next example.

You can also include a WHERE condition in the matching clauses of a MERGE
statement to conditionally perform the DML action based on a data value. Return to the
previous example, but add a condition to update or insert only rows with the Computer
category assigned in the BOOKS_2 table. Figure 12-33 shows WHERE clauses added to the
previous MERGE statement.

FIGURE 12-33 Using WHERE conditions in a MERGE statement

Recall that the BOOKS_2 table contains two rows with books in the Cooking category.
These two rows are no longer processed because of the added WHERE conditions.
Therefore, the retail price of the book Cooking with Mushrooms isn’t updated, and the
book The Wok Way to Cook isn’t inserted. Also, the book Holy Grail of Oracle is originally
assigned the category Business in the BOOKS_l table and Computer in the BOOKS_2
table. The WHERE clause condition checks the category data in the BOOKS_2 table,
which is Computer, so the MERGE statement updates this row in the BOOKS_l table.

Execute another ROLLBACK statement so that the BOOKS_l data is set to the original
three rows before performing the next example.

When a match is found during a MERGE statement, a DELETE statement can also be
conditionally processed. For example, assume the reporting table requires data only for

482

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

books with a retail price of at least $50. Figure 12-34 shows a conditional DELETE action
added to the WHEN MATCHED clause.

FIGURE 12-34 Conditional DELETE in a MERGE statement

The BOOKS_l table contains only two rows instead of three because the DELETE
action removed Cooking with Mushrooms. This row is deleted because the retail amount
is $29.95 in the BOOKS_2 table, which meets the DELETE condition of costing less than
$50. This MERGE statement processes only matched rows, so the other two rows in the
BOOKS_2 table with retail amounts below $50 aren’t processed.

483

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• A subquery is a complete query nested in the SELECT, FROM, HAVING, or
WHERE clause of another query. The subquery must be enclosed in parentheses
and have a SELECT and a FROM clause, at a minimum.

• Subqueries are completed first. The result of the subquery is used as input for the
outer query.

• A single-row subquery can return a maximum of one value.
• Single-row operators include ¼ , >, <, >¼, <¼, and <>.
• Multiple-row subqueries return more than one row of results.
• Operators that can be used with multiple-row subqueries include IN, ALL, ANY,

and EXISTS.
• Multiple-column subqueries return more than one column to the outer query. The

columns of data are passed to the outer query in the same order in which they’re
listed in the subquery’s SELECT clause.

• NULL values returned by a multiple-row or multiple-column subquery
aren’t a problem if the IN or =ANY operator is used. The NVL function
can be used to substitute a value for a NULL value when working with
subqueries.

• Correlated subqueries reference a column contained in the outer query. When
using correlated subqueries, the subquery is executed once for each row the outer
query processes.

• The EXISTS operator is used to formulate a correlated subquery.
• Subqueries can be nested to a maximum depth of 255 subqueries in the outer

query’s WHERE clause. The depth is unlimited for subqueries nested in the outer
query’s FROM clause.

• With nested subqueries, the innermost subquery is executed first, then the next
highest level subquery is executed, and so on, until the outermost query is
reached.

• The WITH clause or subquery factoring clause may be used to define a subquery
before the main query statement and then it allows this subquery to be referenced
multiple times within the statement.

• DML actions can include subqueries to determine which rows are processed.
• A MERGE statement allows performing multiple DML actions conditionally while

comparing data of two tables.

Chapter 12 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

484

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Syntax Guide

Subquery Processing Example

Correlated subquery: References a
column in the outer query. Executes the
subquery once for every row in the outer
query.

SELECT title
FROM books b
WHERE b.isbn IN

(SELECT isbn
FROM orderitems o
WHERE b.isbn = o.isbn);

Uncorrelated subquery: Executes the
subquery first and passes the value to the
outer query.

SELECT title
FROM books b, orderitems o
WHERE books isbn IN

(SELECT isbn
FROM orderitems)

AND b.isbn = o.isbn;

Multiple-Row Comparison Operators

Operator Description

>ALL More than the highest value returned by the subquery

<ALL Less than the lowest value returned by the subquery

<ANY Less than the highest value returned by the subquery

>ANY More than the lowest value returned by the subquery

¼ANY Equal to any value returned by the subquery (same as IN)

[NOT] EXISTS Row must match a value in the subquery

DML Action with a MERGE
Statement Example

Conditionally performs a series of DML
actions

MERGE INTO books_l a
USING books_2 b
ON (a. isbn = b.isbn)

WHEN MATCHED THEN
UPDATE SET a. retail = b. retail,
a.category = b.category

WHEN NOT MATCHED THEN
INSERT (isbn, title, pubdate, retail,
category)

VALUES (b.isbn, b.title, b.pubdate,
b.retail, b.category);

485

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. What’s the difference between a single-row subquery and a multiple-row
subquery?

2. What comparison operators are required for multiple-row subqueries?

3. What happens if a single-row subquery returns more than one row of results?

4. Which SQL clause(s) can’t be used in a subquery in the WHERE or HAVING
clauses?

5. If a subquery is used in the FROM clause of a query, how are the subquery’s results
referenced in other clauses of the query?

6. Why might a MERGE statement be used?

7. How can Oracle 12c determine whether clauses of a SELECT statement belong to an outer
query or a subquery?

8. When should a subquery be nested in a HAVING clause?

9. What’s the difference between correlated and uncorrelated subqueries?

10. What type of situation requires using a subquery?

Multiple Choice

To answer these questions, refer to the tables in the JustLee Books database.

1. Which query identifies customers living in the same state as the customer named
Leila Smith?

a. SELECT customer# FROM customers

WHERE state = (SELECT state FROM customers

WHERE lastname = 'SMITH');

b. SELECT customer# FROM customers

WHERE state = (SELECT state FROM customers

WHERE lastname = 'SMITH'

OR firstname = 'LEILA');

c. SELECT customer# FROM customers

WHERE state = (SELECT state FROM customers

WHERE lastname = 'SMITH'

AND firstname = 'LEILA'

ORDER BY customer);

d. SELECT customer# FROM customers

WHERE state = (SELECT state FROM customers

WHERE lastname = 'SMITH'

AND firstname = 'LEILA');

486

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Which of the following is a valid SELECT statement?

a. SELECT order# FROM orders

WHERE shipdate = SELECT shipdate FROM orders

WHERE order# = 1010;

b. SELECT order# FROM orders

WHERE shipdate =(SELECT shipdate FROM orders)

AND order# = 1010;

c. SELECT order# FROM orders

WHERE shipdate =(SELECT shipdate FROM orders

WHERE order# = 1010);

d. SELECT order# FROM orders

HAVING shipdate =(SELECT shipdate FROM orders

WHERE order# = 1010);

3. Which of the following operators is considered a single-row operator?

a. IN

b. ALL

c. <>

d. <>ALL

4. Which of the following queries determines which customers have ordered the same books
as customer 1017?

a. SELECT order# FROM orders

WHERE customer# = 1017;

b. SELECT customer# FROM orders

JOIN orderitems USING(order#)

WHERE isbn =(SELECT isbn FROM orderitems

WHERE customer# = 1017);

c. SELECT customer# FROM orders

WHERE order# =(SELECT order# FROM orderitems

WHERE customer# = 1017);

d. SELECT customer# FROM orders

JOIN orderitems USING(order#)

WHERE isbn IN (SELECT isbn FROM orderitems

JOIN orders USING(order#)

WHERE customer# = 1017);

487

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Which of the following statements is valid?

a. SELECT title FROM books

WHERE retail<(SELECT cost FROM books

WHERE isbn = '9959789321');

b. SELECT title FROM books

WHERE retail = (SELECT cost FROM books

WHERE isbn = '9959789321' ORDER BY cost);

c. SELECT title FROM books

WHERE category IN (SELECT cost FROM orderitems

WHERE isbn = '9959789321');

d. none of the above statements

6. Which of the following statements is correct?

a. If a subquery is used in the outer query’s FROM clause, the data in the temporary
table can’t be referenced by clauses used in the outer query.

b. The temporary table created by a subquery in the outer query’s FROM clause must be
assigned a table alias, or it can’t be joined with another table by using the JOIN
keyword.

c. If a temporary table is created through a subquery in the outer query’s FROM clause,
the data in the temporary table can be referenced by another clause in the outer query.

d. none of the above

7. Which of the following queries identifies other customers who were referred to JustLee
Books by the same person who referred Jorge Perez?

a. SELECT customer# FROM customers

WHERE referred = (SELECT referred FROM customers

WHERE firstname = 'JORGE'

AND lastname = 'PEREZ');

b. SELECT referred FROM customers

WHERE (customer#, referred) = (SELECT customer#

FROM customers WHERE firstname = 'JORGE'

AND lastname = 'PEREZ');

c. SELECT referred FROM customers

WHERE (customer#, referred) IN (SELECT customer#

FROM customers WHERE firstname = 'JORGE'

AND lastname = 'PEREZ');

d. SELECT customer# FROM customers

WHERE customer# = (SELECT customer#

FROM customers WHERE firstname = 'JORGE'

AND lastname = 'PEREZ');

488

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. In which of the following situations is using a subquery suitable?

a. when you need to find all customers living in a particular region of the country

b. when you need to find all publishers who have toll-free telephone numbers

c. when you need to find the titles of all books shipped on the same date as an order
placed by a particular customer

d. when you need to find all books published by Publisher 4

9. Which of the following queries identifies customers who have ordered the same books as
customers 1001 and 1005?

a. SELECT customer# FROM orders

JOIN books USING(isbn)

WHERE isbn =(SELECT isbn FROM orderitems

JOIN books USING(isbn)

WHERE customer# = 1001 OR customer# = 1005));

b. SELECT customer# FROM orders

JOIN books USING(isbn)

WHERE isbn < ANY(SELECT isbn FROM orderitems

JOIN books USING(isbn)

WHERE customer# = 1001 OR customer# = 1005));

c. SELECT customer# FROM orders

JOIN books USING(isbn)

WHERE isbn =(SELECT isbn FROM orderitems

JOIN orders USING(order#)

WHERE customer# = 1001 OR 1005));

d. SELECT customer# FROM orders

JOIN orderitems USING(order#)

WHERE isbn IN (SELECT isbn FROM orders

JOIN orderitems USING(order#)

WHERE customer# IN (1001, 1005));

10. Which of the following operators is used to find all values greater than the highest value
returned by a subquery?

a. >ALL

b. <ALL

c. >ANY

d. <ANY

e. IN

489

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. Which query determines the customers who have ordered the most books from JustLee Books?

a. SELECT customer# FROM orders

JOIN orderitems USING(order#)

HAVING SUM(quantity)=(SELECT

MAX(SUM(quantity)) FROM orders

JOIN orderitems USING(order#)

GROUP BY customer#) GROUP BY customer#;

b. SELECT customer# FROM orders

JOIN orderitems USING(order#)

WHERE SUM(quantity)=(SELECT

MAX(SUM(quantity)) FROM orderitems

GROUP BY customer#);

c. SELECT customer# FROM orders

WHERE MAX(SUM(quantity))=(SELECT

MAX(SUM(quantity) FROM orderitems

GROUP BY order#);

d. SELECT customer# FROM orders

HAVING quantity =(SELECT MAX(SUM(quantity))

FROM orderitems

GROUP BY customer#);

12. Which of the following statements is correct?

a. The IN comparison operator can’t be used with a subquery that returns only one row of results.

b. The equals (=) comparison operator can’t be used with a subquery that returns more
than one row of results.

c. In an uncorrelated subquery, statements in the outer query are executed first, and then
statements in the subquery are executed.

d. A subquery can be nested only in the outer query’s SELECT clause.

13. What is the purpose of the following query?

SELECT isbn, title FROM books

WHERE (pubid, category) IN (SELECT pubid, category

FROM books WHERE title LIKE '%ORACLE%');

a. It determines which publisher published a book belonging to the Oracle category and
then lists all other books published by that same publisher.

b. It lists all publishers and categories containing the value ORACLE.

c. It lists the ISBN and title of all books belonging to the same category and having the
same publisher as any book with the phrase ORACLE in its title.

d. None of the above. The query contains a multiple-row operator, and because the inner
query returns only one value, the SELECT statement will fail and return an error message.

490

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. A subquery must be placed in the outer query’s HAVING clause if:

a. The inner query needs to reference the value returned to the outer query.

b. The value returned by the inner query is to be compared to grouped data in the outer
query.

c. The subquery returns more than one value to the outer query.

d. None of the above. Subqueries can’t be used in the outer query’s HAVING
clause.

15. Which of the following SQL statements lists all books written by the author of The Wok Way
to Cook?

a. SELECT title FROM books

WHERE isbn IN (SELECT isbn FROM bookauthor

HAVING authorid IN 'THE WOK WAY TO COOK);

b. SELECT isbn FROM bookauthor

WHERE authorid IN (SELECT authorid FROM books

JOIN bookauthor USING(isbn)

WHERE title = 'THE WOK WAY TO COOK');

c. SELECT title FROM bookauthor

WHERE authorid IN (SELECT authorid FROM books

JOIN bookauthor USING(isbn)

WHERE title = 'THE WOK WAY TO COOK);

d. SELECT isbn FROM bookauthor

HAVING authorid = SELECT authorid FROM books

JOIN bookauthor USING(isbn)

WHERE title = 'THE WOK WAY TO COOK';

16. Which of the following statements is correct?

a. If the subquery returns only a NULL value, the only records returned by an outer query
are those containing an equivalent NULL value.

b. A multiple-column subquery can be used only in the outer query’s FROM clause.

c. A subquery can contain only one condition in its WHERE clause.

d. The order of columns listed in the SELECT clause of a multiple-column subquery must
be in the same order as the corresponding columns listed in the outer query’s WHERE
clause.

17. In a MERGE statement, an INSERT is placed in which conditional clause?

a. USING

b. WHEN MATCHED

c. WHEN NOT MATCHED

d. INSERTS aren’t allowed in a MERGE statement.

491

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18. Given the following query, which statement is correct?

SELECT order# FROM orders

WHERE order# IN (SELECT order# FROM orderitems

WHERE isbn = '9959789321');

a. The statement doesn’t execute because the subquery and outer query don’t reference
the same table.

b. The outer query removes duplicates in the subquery’s Order# list.

c. The query fails if only one result is returned to the outer query because the outer
query’s WHERE clause uses the IN comparison operator.

d. No rows are displayed because the ISBN in the WHERE clause is enclosed in single
quotation marks.

19. Given the following SQL statement, which statement is most accurate?

SELECT customer# FROM customers

JOIN orders USING(customer#)

WHERE shipdate-orderdate IN

(SELECT MAX(shipdate-orderdate) FROM orders

WHERE shipdate IS NULL);

a. The SELECT statement fails and returns an Oracle error message.

b. The outer query displays no rows in its results because the subquery passes a NULL
value to the outer query.

c. The customer number is displayed for customers whose orders haven’t yet shipped.

d. The customer numbers of all customers who haven’t placed an order are displayed.

20. Which operator is used to process a correlated subquery?

a. EXISTS

b. IN

c. LINK

d. MERGE

Hands-On Assignments

To perform these assignments, refer to the tables in the JustLee Books database. Use a
subquery to accomplish each task. Make sure you execute the query you plan to use as the
subquery to verify the results before writing the entire query.

1. List the book title and retail price for all books with a retail price lower than the average
retail price of all books sold by JustLee Books.

2. Determine which books cost less than the average cost of other books in the same
category.

3. Determine which orders were shipped to the same state as order 1014.

4. Determine which orders had a higher total amount due than order 1008.

492

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Determine which author or authors wrote the books most frequently purchased by
customers of JustLee Books.

6. List the title of all books in the same category as books previously purchased by customer
1007. Don’t include books this customer has already purchased.

7. List the shipping city and state for the order that had the longest shipping delay.

8. Determine which customers placed orders for the least expensive book (in terms of regular
retail price) carried by JustLee Books.

9. Determine the number of different customers who have placed an order for books written or
cowritten by James Austin.

10. Determine which books were published by the publisher of The Wok Way to Cook.

Advanced Challenge

To perform this activity, refer to the tables in the JustLee Books database.
Currently, JustLee Books bills customers for orders by enclosing an invoice with each order

when it’s shipped. A customer then has 10 days to send in the payment. Of course, this practice
has resulted in the company having to list some debts as “uncollectible.” By contrast, most other
online booksellers receive payment through a customer’s credit card at the time of purchase.
With this method, although payment would be deposited within 24 hours into JustLee’s bank
account, there’s a downside. When a merchant accepts credit cards for payment, the company
processing the credit card sales (usually called a “credit card clearinghouse”) deducts a 1.5%
processing fee from the total amount of the credit card sale.

The management of JustLee Books is trying to determine whether the surcharge for credit
card processing is more than the amount usually deemed uncollectible when customers are
sent an invoice. Historically, the average amount that JustLee Books has lost is about 4% of the
total amount due from orders with a higher-than-average amount due. In other words, usually
customers who have an order with a larger-than-average invoice total default on payments.

To determine how much money would be lost or gained by accepting credit card payments,
management has requested that you do the following:

1. Determine how much the surcharge would be for all recently placed orders if payment had
been made by a credit card.

2. Determine the total amount that can be expected to be written off as uncollectible based on
recently placed orders with an invoice total more than the average of all recently placed orders.

Based on the results of these two calculations, you should determine whether the company
will lose money by accepting payments via credit card. State your findings in a memo to
management. Include the SQL statements for calculating the expected surcharge and the
expected amount of uncollectible payments.

Case Study: City Jail

Make sure you have run the CityJail_8.sql script from Chapter 8. This script makes all database
objects available for completing this case study.

The city’s Crime Analysis unit has submitted the following data requests. Provide the SQL
statements using subqueries to satisfy the requests. Test the statements and show execution
results.

493

Subqueries and Merge Statements

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. List the name of each officer who has reported more than the average number of crimes
officers have reported.

2. List the names of all criminals who have committed less than average number of crimes
and aren’t listed as violent offenders.

3. List appeal information for each appeal that has a less than average number of days
between the filing and hearing dates.

4. List the names of probation officers who have had a less than average number of criminals
assigned.

5. List each crime that has had the highest number of appeals recorded.

6. List the information on crime charges for each charge that has had a fine above average
and a sum paid below average.

7. List the names of all criminals who have had any of the crime code charges involved in
crime ID 10089.

8. Use a correlated subquery to determine which criminals have had at least one probation
period assigned.

9. List the names of officers who have booked the highest number of crimes. Note that more
than one officer might be listed.
Note: Use a MERGE statement to satisfy the following request:

10. The criminal data warehouse contains a copy of the CRIMINALS table that needs to be
updated periodically from the production CRIMINALS table. The data warehouse table is
named CRIMINALS_DW. Use a single SQL statement to update the data warehouse table
to reflect any data changes for existing criminals and to add new criminals.

494

Chapter 12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R13
VIEWS

L E A R N I N G O B J E C T I V E S

After completing this chapter, you should be able to do the following:

• Create a view by using the CREATE VIEW or CREATE OR REPLACE
VIEW command

• Use the FORCE and NOFORCE options

• State the purpose of the WITH CHECK OPTION constraint

• Explain the effect of the WITH READ ONLY option

• Update a record in a simple view

• Re-create a view

• Explain the implication of using an expression in a view for DML
operations

• Update a record in a complex view

• Identify problems associated with adding records through a complex view

• Identify the key-preserved table underlying a complex view

• Drop a view

• Explain inline views using CROSS or OUTER APPLY methods and
performing a TOP-N analysis

• Create a materialized view to replicate data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I N T R O D U C T I O N

Views are database objects that store a SELECT statement and allow using a query’s
results as a table. Views have two purposes:

• Simplify issuing complex SQL queries
• Restrict users’ access to sensitive data

Although views are database objects, they don’t actually store data. A view stores a
query and is used to access data in the underlying tables. You can think of a view as the
result of a stored query: The results are given a name that allows using them as the source
for queries, just as you would use a table. In fact, you can reference a view in the FROM
clause of a SELECT statement, just as you reference any table. Views can use all the
features of a query, including specifying columns, restricting rows, and aggregating data.

Figure 13-1 shows the basic processing of a view. When a query references a view, the
query in the view is processed, and the results are treated as a virtual or temporary table.
In this figure, any query referencing the BOOK_VU view can examine only books in the
Cooking category because of the condition in the WHERE clause.

FROM clause in
query references
a view rather than
a table

SELECT*
 FROM book_vu;

Stores query:

SELECT isbn, title, category
 FROM books

 WHERE category = ‘COOKING’;

BOOK_VU view
(view stored in database)

Isbn Title Category

8299282519 The Wok
Way to Cook

Cooking

(temporary table)

3437212490 Cooking with
Mushrooms

CookingIsbn Title Category
8299282519 The Wok

Way to Cook
Cooking

Results

4

3

1

2

Processing steps:
1. A query references a view rather than a table in the FROM clause.
2. The query stored in the view is executed.
3. The results from the view query are stored in temporary storage.
4. The original query uses the temporary query results of the view as a table and

completes execution.

3437212490 Cooking with
Mushrooms

Cooking

FIGURE 13-1 View processing

496

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Next, take a look at some examples of how views can help simplify complex queries.
First, nontechnical users might not be familiar with SQL coding, and data retrieval from
JustLee Books tables can require fairly complex queries. For example, an employee
needs to find details for a specific order, including customer information, order date,
book titles, prices paid, and calculated total item amount. To accomplish this task, the
employee must query the CUSTOMERS, ORDERS, ORDERITEMS, and BOOKS tables
simultaneously. The average employee probably lacks the training needed to create a
query that joins multiple tables and performs the necessary calculations. To simplify the
task, one option is creating a view that contains all the necessary information. So
instead of teaching users how to create queries with joins and calculations, you can
show them how to perform simple queries on a virtual table that includes customer
names, order numbers, order dates, book titles, quantity of books ordered, prices paid,
and calculated extended prices.

Application development can also be simplified by using views. For example, a
developer might have several screens requiring customer order details that involve using a
complex query. Instead of programming the query in multiple places in the application,
the developer could create a view that stores the complex query. Then the developer just
needs to perform a simple query on the view in the application code.

A view can also be used to restrict access to what management considers sensitive
data. For example, the BOOKS table contains both the cost and retail price of each book
in inventory. What happens if management decides book costs shouldn’t be accessed by
every employee in the company? Do you delete the column from the BOOKS table? If so,
how would you calculate the profit for each book sold? Instead of giving users access to
the actual table storing all data for books, you can give them access to data via a view that
includes only the data they need, based on their job duties.

Views are used most commonly to query data. Some developers, however, might
want to perform DML activities on data accessed via a view. This chapter explains the
commands and guidelines regulating DML operations on data accessed by views. The
last section of this chapter introduces materialized views, which are views that store
data permanently. Table 13-1 gives you an overview of this chapter’s contents.

TABLE 13-1 Overview of View Concepts

View Type Description

Simple view A view based on a subquery that references only one table and doesn’t include
group functions, expressions, or GROUP BY clauses.

Complex view A view based on a subquery that retrieves or derives data from one or more
tables and can contain functions or grouped data.

Inline view A subquery used in the FROM clause of a SELECT statement to create a
“temporary” table that can be referenced by the outer query’s SELECT and
WHERE clauses.

Materialized view A view that replicates data by physically storing the view query’s results.

497

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE 13-1 Overview of View Concepts (continued)

View Type Description

Create a view CREATE [OR REPLACE] [FORCE|NOFORCE]
VIEW viewname (columnname, ...)

AS subquery
[WITH CHECK OPTION [CONSTRAINT constraintname]]
[WITH READ ONLY] ;

Drop a view DROP VIEW viewname;

Create an inline
view

SELECT columnname, ...
FROM (subquery)

WHERE ROWNUM <= n;

Create a materia-
lized view

CREATE MATERIALIZED VIEW custbal_mv
REFRESH COMPLETE
START WITH SYSDATE NEXT SYSDATE + 7
AS SELECT customer#, city, state, order#,

SUM(quantity*retail) Amtdue
FROM customers JOIN orders

USING (customer#)
JOIN orderitems USING (order#)
JOIN books USING (isbn)

GROUP BY customer#, city, state, order#;

D A T A B A S E P R E P A R A T I O N

Before attempting to work through the examples in this chapter, make sure you have executed the
JLDB_Build_8.sql script, as instructed in Chapter 8.

C R E A T I N G A V I E W

A view is created with the CREATE VIEW command, using the syntax shown in Figure 13-2.

FIGURE 13-2 Syntax of the CREATE VIEW command

498

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following is an overview of the syntax elements shown in Figure 13-2:

• CREATE VIEW/CREATE OR REPLACE VIEW: You use the CREATE VIEW
keywords to create a view, choosing a name that no other database object in
the current schema is using. There’s no way to modify or change an existing
view, so if you need to change a view, you must use the CREATE OR
REPLACE VIEW keywords. The OR REPLACE option notifies Oracle 12c that
a view with the same name might already exist; if it does, the view’s previous
version should be replaced with the one defined in the new command.

• FORCE/NOFORCE: NOFORCE is the default mode for the CREATE VIEW
command, which means all tables and columns must be valid, or the view isn’t
created. So if you attempt to create a view based on a table that doesn’t exist or is
currently unavailable (for example, offline), Oracle 12c returns an error message,
and the view isn’t created. However, if you include the FORCE keyword in the
CREATE clause, Oracle 12c creates the view in spite of the absence of any
referenced tables. This approach is commonly used when a new database is being
developed and the data hasn’t yet been loaded, or entered, into database objects.

• View name: As mentioned, you should give each view a name that isn’t
already assigned to another database object in the same schema.

• Column names: If you want to assign new names for columns the view
displays, list them after the VIEW keyword inside parentheses. The number
of names listed must match the number of columns returned by the SELECT
statement. An alternative is using column aliases in the query. In this case,
Oracle 12c uses the aliases as column names in the view that’s created.

• AS clause: The query listed after the AS keyword must be a complete
SELECT statement (including both SELECT and FROM clauses) and can
reference more than one table. The query can also include single-row and
group functions, WHERE and GROUP BY clauses, nested subqueries, and so
on. However, as with subqueries, the query can’t include the ORDER BY
clause. The query results are the content of the view that’s created.

• WITH CHECK OPTION constraint: TheWITH CHECK OPTION constraint
ensures that any DML operations performed on the view (such as adding rows or
changing data) don’t prevent the view from accessing the row because it no
longer meets the condition in the WHERE clause. For example, if a view consists
of books only in the Cooking category, and the user attempts to change the
category of a book in the view to Family Life, the change isn’t allowed if WITH
CHECK OPTION was included when the view was created. Why? The change
would mean that the book is no longer listed in the view, which consists of books
only in the Cooking category. If WITH CHECK OPTION is omitted when the
view is created, any valid DML operation is allowed, even if the result is that
rows being changed are no longer included in the view. However, if you’re
creating a view with the sole purpose of displaying data, the WITH READ ONLY
option can be used instead to ensure that data can’t be changed.

• WITH READ ONLY option: The WITH READ ONLY option prevents
performing any DML operations on the view. This option is used often when
it’s important that users can only query data, not make any changes to it.

499

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following sections cover these operations in more depth. First, you see how to
create a simple view, then how to change a simple view, and finally how to create a
complex view.

Creating a Simple View
You create a simple view from a subquery that references only one table and doesn’t
include a group function, an expression (such as retail-cost), or a GROUP BY
clause. For example, when JustLee Books customer service representatives assist
customers with orders, they need to access the ISBN, title, and retail price of every
book in JustLee’s inventory. However, management doesn’t want representatives to view
the books’ actual cost. The solution: Create a simple view that allows them to access
only the data needed to assist customers—and not access irrelevant columns, such as
Pubid and Cost. Figure 13-3 shows the command for creating the view customer service
representatives need.

FIGURE 13-3 Command to create the INVENTORY view

As indicated in the CREATE VIEW clause, the name of the new view is INVENTORY.
Note these other elements in Figure 13-3:

• Because no other view with this name exists, the OR REPLACE clause isn’t
necessary.

• The only columns included in the view are the ISBN, Title, and Retail
columns from the BOOKS table. Notice that the Retail column has been
assigned the column alias “Price.” Therefore, whenever the Retail column is
referenced in a query on the INVENTORY view, it must be called Price in the
query.

• The WITH READ ONLY option is used so that no customer service
representative can change a book’s ISBN, title, or price accidentally. Any
changes made to data in a simple view created without the WITH READ
ONLY option update the underlying BOOKS table automatically.

T I P

lt’s a common concern that users might accidentally, or even intentionally, change data when accessing
it through views.

As shown in Figure 13-4, after the INVENTORY view is created, users can reference it
in the FROM clause of a SELECT statement in the same manner as they would any table.

500

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-4 Selecting all records from the INVENTORY view

N O T E

If the command in Figure 13-4 returns an error message, make sure no view with the same name exists
already. If it does, add the keywords OR REPLACE to the CREATE VIEW clause, and then execute the
command again. In addition, if you get an error stating that you have insufficient privileges, you need to
grant the CREATE VIEW privilege to your user account. Refer to your installation instructions or contact
your instructor.

Keep in mind that the query defining the INVENTORY view didn’t filter rows with a
WHERE clause, so all book rows are accessible through the view. However, row filtering is
a popular reason for creating views. For example, JustLee Books might want to limit
regional managers’ access to customer data based on their region. To limit their access to
rows with a specific region value, you can use a WHERE clause in the view. Figure 13-5
shows creating this view for the Northeast region.

501

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-5 Row filtering with a view

Return to the view created in Figure 13-4. Although the INVENTORY view can
be retrieved with a SELECT statement as though it were a regular table, the view
in Figure 13-4 is created with a WITH READ ONLY option, which prevents
performing any DML operations on the data. In Figure 13-6, the user is
unsuccessfully attempting to update data in the Price and Title columns of the
INVENTORY view.

First, the user attempts to change the retail price of the book Shortest Poems. Notice
that the SET clause references the Price column (the column alias for the Retail column,
specified in the view’s SELECT statement). Also, because the user couldn’t remember
the book’s exact title, a search pattern is used in the WHERE clause to identify the book
being updated. The percent signs (%) indicate that characters might appear before and
after the word Poems, but the book’s title must contain the word Poems. However,
Oracle 12c returns an error message indicating that DML operations can’t be performed
on read-only views.

502

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-6 Failed updates on the INVENTORY view

Second, the user attempts to change the book title to see whether the problem is
caused by the column alias used for the Retail column, but the same error message is
returned. Both UPDATE attempts failed because the view was created with the WITH
READ ONLY option, so no DML operations are allowed.

503

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DML Operations on a Simple View
If the technical staff decides that the INVENTORY view should be used to alter the
retail prices of books currently in inventory, the view can be re-created with the
CREATE OR REPLACE VIEW command—without the WITH READ ONLY option.
Because the INVENTORY view already exists in the database, the OR REPLACE
keywords must be included, or Oracle 12c returns an error message stating that the
view already exists.

In Figure 13-7, the INVENTORY view has been re-created—without a WITH READ
ONLY option, so updates are allowed. After this view is re-created, anyone with access
to it can change the ISBN, title, or retail price of any book in the BOOKS table.

FIGURE 13-7 Re-create the view to allow DML activity

For example, the original retail price of Bodybuild in 10 Minutes a Day was $30.95.
Figure 13-8 shows an UPDATE command issued on the view to change the book’s retail
price to $49.95. The previous version of the view wouldn’t have allowed changing this data
because WITH READ ONLY was used. As shown, now the view accepts the change, so the
price in the underlying BOOKS table is altered.

504

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-8 Issue a DML command on a simple view

The basic rule for DML operations on a simple view is this: As long as the view isn’t
created with the WITH READ ONLY option, any DML operation is allowed if it doesn’t
violate an existing constraint on the underlying table. In essence, you can add, modify,
and even delete data in an underlying table as long as one of the following constraints
doesn’t prevent the operation:

• PRIMARY KEY
• NOT NULL
• UNIQUE
• FOREIGN KEY
• WITH CHECK OPTION

N O T E

If the SELECT statements in Figures 13-7 or 13-8 return an error message or don’t display any rows,
make sure the book title in the WHERE clause is enclosed in single quotation marks and includes the %
signs in the search pattern for BODYBUILD.

Now take a look at another view example. As shown in Figure 13-9, the
OUTSTANDING view has been created to display all orders in the ORDERS table that
haven’t been shipped yet.

505

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-9 Create a view with the WITH CHECK OPTION constraint

Because the WITH CHECK OPTION constraint is included, the OUTSTANDING view
can’t be used to update the ship date of any of the six records that haven’t been shipped
because changing this field would remove the record from the view. Any attempt to
change an order’s ship date to a non-NULL value returns an error message, and the update
fails, as shown in Figure 13-10.

FIGURE 13-10 Error returned on an update that violates WITH CHECK OPTION

506

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the purpose of the OUTSTANDING view is to allow users to enter an order’s ship
date when it’s shipped, it should be re-created without the WITH CHECK OPTION
constraint, as shown in Figure 13-11. Next, a command is issued to update order
1012’s ship date to April 6, 2009. Because the WITH CHECK OPTION constraint is no
longer used on the OUTSTANDING view, the update is allowed. However, the record
isn’t included in the view after the change occurs because the Shipdate field is no
longer NULL.

FIGURE 13-11 Update succeeds on the view created without WITH CHECK OPTION

T I P

You should attempt the DML operations in this chapter and experiment with variations of the
examples. You can “undo” any DML operation by issuing the ROLLBACK command so that you don’t
have to rebuild the views. In a real-world situation, however, you would store copies of the tables in a
test environment and experiment on the copies rather than the real data.

507

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C R E A T I N G A C O M P L E X V I E W

You create a complex view with the same CREATE VIEW command you use for a simple
view. However, the SELECT statement in a complex view retrieves or derives data from
one or more tables and can contain functions or grouped data. The main difference in
functionality between simple and complex views is that certain DML operations aren’t
permitted with complex views. To explain how complex views react to DML operations,
this section uses three different views:

• The first complex view is based on one table, but it uses an expression for
one of the columns.

• The second complex view is based on two tables and also uses an expression
for one of the columns.

• The third complex view is derived from four tables, and it includes a group
function and a GROUP BY clause.

DML Operations on a Complex View with an Arithmetic Expression
As you’ll see, different factors affect the type of DML operations allowed on
complex views. For example, if a view contains a column that’s the result of an
arithmetic expression or grouped data, or if it’s based on multiple tables and
determining exactly which table should be modified is difficult, certain DML
operations don’t work.

The complex view in Figure 13-12 shows creating and updating a view called
PRICES. This complex view seems like a simple view, except it uses the expression
retail-cost to calculate the Profit column. It also includes an UPDATE command,
using SET retail = 29.95 to change the retail price of Revenge of Mickey from
$22.00 to $29.95. Again, the view acts like a simple view because the UPDATE
command to make the change works.

508

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-12 Create and update a complex view named PRICES

What about removing rows in the view, however? In Figure 13-13, the first DELETE
command raises a constraint error because it’s attempting to remove a row from the
BOOKS table that has FOREIGN KEY dependencies.

The next two commands disable the FOREIGN KEY constraints, and then the DELETE
command is tried again. The second DELETE successfully removes the book Revenge of
Mickey from the PRICES view, which actually removes the book from the BOOKS table.
So the DELETE command works for this view, as long as it doesn’t violate any constraints
on the underlying table.

509

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-13 Deleting a book via the PRICES view

Now what about adding a record to the view? Before attempting it, remember that
the Profit column is based on the expression retail-cost to calculate the profit
generated by the book. So when you add a new book to the PRICES view, do you enter the
profit generated, or should you let Oracle 12c calculate the profit? First, attempt an
INSERT that includes a profit amount, and then try excluding it. The INSERT statements
in Figure 13-14 show the outcome of these two attempts.

The first attempt includes the profit that would be generated by the new book added
to the view. However, Oracle 12c doesn’t accept the calculated profit that’s entered. The
error message “virtual column not allowed here” is one you might see often until you learn
the rules for DML operations on complex views. In this case, it means that because a
column in the view is based on an arithmetic expression, a value can’t be inserted into this
column. In other words, a Profit column doesn’t exist in the underlying BOOKS table, so
this value has no place to be stored in the database.

510

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-14 Failed attempts to add a new book via the PRICES view

The second INSERT attempt in Figure 13-14 tries to add a new record to the PRICES
view and exclude the profit value. This attempt returns the error message “not enough
values.” This message is simple enough; it indicates that the view contains five values, but
only four values are included in the INSERT statement. Therefore, the only way to add a
new book to the PRICES view is to use a column list in the INSERT statement, as shown in
Figure 13-15.

511

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-15 Successful attempt to add a new book via the PRICES view

You have discovered one of the rules governing DML operations in complex views:
Values can’t be inserted into columns based on arithmetic expressions.

Another consideration is NOT NULL constraints on the underlying table. What if the BOOKS
table contains a NOT NULL constraint on the Pubid column? Would the INSERT command via
the PRICES view still work? No! The PRICES view doesn’t contain the Pubid column and,
therefore, doesn’t allow indicating a value for this column in an INSERT statement. Figure 13-16
shows adding a NOT NULL constraint on the Pubid column and then another attempt of the
previously successful INSERT command. First, the row that was added previously must be
deleted because it doesn’t contain a Pubid value and would violate the NOT NULL constraint.

FIGURE 13-16 Constraint violation with an INSERT command via the PRICES view

512

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DML Operations on a Complex View Containing Data from Multiple Tables
To add a little more complexity to the complex view called PRICES, the view has been re-
created in Figure 13-17 to include the names of publishers from the PUBLISHER table.

FIGURE 13-17 PRICES view with a table join

Now try to perform the same type of DML operations as you did on the previous
version of the PRICES view. First, attempt to update the price of a book, as shown in
Figure 13-18. The retail price of the book Big Bear and Little Dove has been changed from
$8.95 to $13.95. As with the previous PRICES view, the DML operation to modify a record
works here too.

FIGURE 13-18 Updating the Retail column via the PRICES view

513

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

However, the change made to the view includes the publisher’s name from the
PUBLISHER table, so what happens if the Name column is updated? Look at Figure 13-19.
When Oracle 12c attempts to update the name of the publisher of Big Bear and Little
Dove, the UPDATE command fails, and you get the error message “cannot modify a
column which maps to a non key-preserved table.”

FIGURE 13-19 Failed attempt to update the publisher name via the PRICES view

Taking a step back and analyzing the underlying tables can help you understand the
error message’s meaning and what caused the error to occur. The PRICES view was built
with columns from the BOOKS and PUBLISHER tables. When a view includes columns
from more than one table, updates can be applied to only one table. The table that can be
updated is the one including the primary key of an underlying table and is basically used
as the primary key for the view. The PRICES view includes the primary key for the
BOOKS table, so any UPDATE command can be performed on columns from the BOOKS
table—if the change doesn’t violate any constraints on that table. (For example, you can’t
change the primary key if it’s used as a reference for a FOREIGN KEY constraint or if it
would no longer be unique.)

In the PRICES view, the BOOKS table is known as the key-preserved table. In
essence, a key-preserved table is the table containing the primary key that the view is
using to uniquely identify each record it displays. By contrast, the Name column is from
the PUBLISHER table. The primary key for this table is the Pubid column, and it’s not
included in the view. However, even if this column is included, Oracle 12c doesn’t
consider it the primary key for the PRICES view because it could have appeared more
than once in the view’s contents. Therefore, Oracle 12c treats data from the PUBLISHER

514

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

table as coming from a non-key-preserved table because it doesn’t uniquely identify
records in the PRICES view.

One way to make sense of this problem is to remember that the BOOKS table actually
stores publishers’ ID numbers. Therefore, if Oracle 12c changes the publisher’s name, as
in Figure 13-19’s UPDATE command, does it mean you want the Pubid column updated in
the BOOKS table as well? Or do you change the publisher’s name in the PUBLISHER
table? If the name is changed in the PUBLISHER table, every book with the same Pubid as
Big Bear and Little Dove would be published by the publisher Print Is Us, and this isn’t the
command’s intention.

Now you have discovered a second rule that applies to complex views: DML
operations can’t be performed on a non-key-preserved table. To test this rule, execute the
DELETE command on the PRICES view shown in Figure 13-20.

FIGURE 13-20 Deleting a book via the PRICES view

Given the results of this DELETE command, it might seem as though there’s a
problem with the second rule. You weren’t allowed to update the publisher’s name for
the book, but you were allowed to delete the row for the book. However, what actually
occurred is that Big Bear and Little Dove was deleted from the BOOKS table, which is the
key-preserved table. No change occurred in the PUBLISHER table, so technically, the
command didn’t perform a DML operation on the non-key-preserved table; therefore, the
rule was not violated.

N O T E

Keep in mind that the FOREIGN KEY constraints on the BOOKS table were disabled earlier.

DML Operations on a Complex View Containing Functions or
Grouped Data
Views are also considered complex if they contain a function or GROUP BY clause. To
determine what effect they have on DML commands, create a BALANCEDUE view that
displays the total balance due for each order placed by a customer, as shown in Figure 13-21.

515

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-21 View including grouped data

The BALANCEDUE view groups the items on each customer’s order, and then
calculates the total amount due, based on the number of books ordered and each book’s
retail price. Adding a record to this view isn’t allowed because the Amtdue column is
derived from a function (treated the same way as an expression). Even without the SUM
function, Oracle 12c still wouldn’t allow adding a record because of the GROUP BY clause.
The data being displayed is grouped, so adding a single record to the view isn’t possible.

In addition, the function and GROUP BY clause prevent changing the displayed data
because each record might represent more than one row in the underlying key-preserved
table. (Try a little experiment on your own, and see whether you can add or modify a
record, but don’t be too disappointed if you get an error message.) Therefore, the question
is “Will Oracle 12c allow deleting a row from the view?” Figure 13-22 shows an attempt.

516

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-22 Failed DELETE command on a view with grouped data

Apparently, the answer is no. The rationale behind not allowing a record to be deleted
from the view is that the data is grouped, so clarifying exactly what to delete is hard.
Instead of allowing a user to mistakenly delete what could be several rows in the
underlying key-preserved table, the operation is simply not allowed. Therefore, if you
really want to delete a particular customer’s orders, you have to delete them directly from
the ORDERS table. (Of course, if this deletion violates any existing constraints between
the ORDERS and ORDERITEMS tables, it might not be possible without including an ON
CASCADE DELETE option.) Now a third rule has been identified: DML operations aren’t
permitted if the view includes a group function or a GROUP BY clause.

DML Operations on a Complex View Containing DISTINCT or ROWNUM
You must also consider the impact of using the DISTINCT keyword or the ROWNUM
pseudocolumn in a view. Recall that the DISTINCT keyword is used to prevent
duplicates in the results. Similarly, the ROWNUM pseudocolumn is used to limit the
rows a query returns.

When using the DISTINCT keyword in a subquery to create a view, remember that in
a SELECT clause, the keyword instructs Oracle 12c to suppress duplicates. In other
words, if more than one row of a table contains the same data, Oracle displays the row
only once in the view. If you consider each unique row as one group, the DISTINCT
keyword acts almost like a GROUP BY clause. Therefore, a fourth rule has emerged: DML
operations on a view created with the DISTINCT keyword aren’t permitted.

517

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T I P

If the rationale behind not permitting DML operations doesn’t seem valid, try to create a “distinct” view of
the ISBNs in the ORDERITEMS table and attempt some DML operations.

The second point applies to using ROWNUM, which is a pseudocolumn that applies to
every query, even though it isn’t displayed with a SELECT * command. When a query is
processed, each row returned is assigned a number called the ROWNUM. This value is
assigned before any sorting or aggregation. The query in Figure 13-23 instructs Oracle 12c
to list each customer’s last name and the record’s position in the query. However, the query
also requires displaying last names in alphabetical order. As shown in the query results, the
customer with the last name Cruz is listed first because the list is sorted alphabetically.
However, this customer record is actually the sixth row returned by the query.

FIGURE 13-23 Displaying ROWNUMs in a sorted customer list

518

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

If the SELECT command in Figure 13-23 didn’t include an ORDER BY clause, the rows would be
displayed in ROWNUM order because it reflects the order in which rows are queried.

So what does ROWNUM have to do with DML operations on a complex view? If the
query of a complex view includes ROWNUM as one of the columns, no DML operation is
allowed on the view. Because ROWNUM is a pseudocolumn that Oracle 12c uses to assign
a value to each row, Oracle 12c doesn’t allow any additions, deletions, or modifications on
data displayed in the view. This results in the final rule: DML operations aren’t allowed on
views that include the ROWNUM pseudocolumn.

Summary Guidelines for DML Operations on a Complex View
The following list summarizes the guidelines regulating DML operations on complex views:

• DML operations that violate a constraint aren’t permitted.
• A value can’t be added to a column containing an arithmetic expression.
• DML operations aren’t permitted on non-key-preserved tables.
• DML operations aren’t permitted on views that include group functions, a

GROUP BY clause, the DISTINCT keyword, or the ROWNUM pseudocolumn.

D R O P P I N G A V I E W

A view can be dropped or deleted with the DROP VIEW command. Figure 13-24 shows
the syntax of this command.

FIGURE 13-24 Syntax of the DROP VIEW command

The command to drop the PRICES view used earlier is shown in Figure 13-25.

FIGURE 13-25 Command to drop the PRICES view

519

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the command is executed successfully, Oracle 12c returns a message
stating that the view has been dropped. However, the data the view displayed is
still available in the underlying tables used to create the view. All that has been
deleted is the database object named PRICES that pointed to data stored in the
underlying tables.

C R E A T I N G A N I N L I N E V I E W

In Chapter 12, you used a subquery in the FROM clause of a SELECT statement to
create a “temporary” table that could be referenced by the SELECT and WHERE
clauses. It was considered temporary because a copy of the data the subquery returned
wasn’t stored in the database. This temporary table is similar to what’s called an inline
view in Oracle 12c. The main difference between an inline view and the other views
discussed is that an inline view exists only while the command is being executed. It’s
not a permanent database object and can’t be referenced again by a subsequent query.
This view is used most often to provide a temporary data source while a command is
being executed. Some common uses of inline views involve completing join operations
and performing TOP-N analysis.

CROSS and OUTER APPLY Methods for Joins
Oracle 12c introduced the CROSS and OUTER APPLY methods as additional options for
performing join operations. These methods allow a column of the joining table to be used
to produce the result set of the inline view. For example, Figure 13-26 displays an inline
view or subquery in the FROM clause that attempts to reference the ISBN column from
another table in the query—the BOOKS table. Note that an error is produced if we attempt
to complete this operation within a basic FROM clause.

FIGURE 13-26 Error generated by inline view

520

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This query may be accomplished now in Oracle 12c by applying a CROSS APPLY
join operation in the FROM clause. Figure 13-27 displays the modified statement and
successful completion. The CROSS APPLY method is equivalent to an inner join
operation; therefore, only the rows that find a match between the BOOKS table and
inline view result set will be included in the result set.

FIGURE 13-27 A CROSS APPLY join method

An OUTER APPLY method used in the same manner within the FROM clause will
complete a join operation equivalent to a left outer join. Figure 13-28 displays the same
query using the OUTER APPLY method. The result set includes all rows from the BOOKS
table—even the rows that had no sales record in the inline view result set.

521

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-28 An OUTER APPLY join method

These methods provide additional join options and are similar to features available to
MS SQL Server database users, which can simplify migrations from SQL Servers. In
addition, even more inline view flexibility may be experienced by incorporating PL/SQL
functions to generate the inline view that use column references from the main query
table as parameters. PL/SQL is the procedural language built into the Oracle database and
is covered in the next book within this Oracle text series.

TOP-N Analysis
Suppose you want to find the five books that generate the most profit. In Chapter 11,
you used the MAX group function to find the most profitable book. However, using this
function yields only the highest value in a column. How do you find the five highest
values? You use TOP-N analysis, in which the concepts of an inline view and the
ROWNUM pseudocolumn are merged to create a temporary list of records in a sorted
order, and then the top N, or number, of records are retrieved. An inline view must be
used for this analysis because the subquery must use an ORDER BY clause to put records
in the correct order before passing the results to the outer query—and ORDER BY clauses
aren’t allowed in the CREATE VIEW command. Figure 13-29 shows the syntax for
performing TOP-N analysis.

522

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-29 Syntax of TOP-N analysis

To determine the five books that generate the most profit, the subquery needs to
calculate the profit for each book and then sort the results in descending order by profit
before passing the values to the outer query. Figure 13-30 shows this subquery.

FIGURE 13-30 Subquery for performing TOP-N analysis

To perform the analysis, the subquery must be nested in the FROM clause of a
SELECT statement to create the inline view. When the sorted results are passed from the
subquery, each row is assigned a ROWNUM to identify its position in the results. Keep in
mind that the ROWNUM is assigned before any sorting; however, in this case, the sorting
has already occurred in the subquery. Then a WHERE clause is added to the outer query

523

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to select only those books with a ROWNUM less than or equal to N. In this case, N is 5
because you’re looking for the five most profitable books.

Figure 13-31 shows the command to determine the five most profitable books. When
the command is executed, Oracle 12c displays only books with a ROWNUM less than or
equal to 5. Because the outer query receives data in descending order based on profit, the
top five most profitable books are assigned ROWNUMs 1 through 5.

FIGURE 13-31 TOP-N analysis to identify the five most profitable books

The five most profitable books have a profit range between $22.15 and $41.95. What if
management wants to know the titles of the three least profitable books, however? The
simplest solution is using a subquery to sort the data, so the least profitable book receives
the first ROWNUM, the second least profitable book receives the second ROWNUM, and so
on. This query and output are shown in Figure 13-32.

524

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-32 TOP-N analysis to determine the three least profitable books

The subquery in Figure 13-32 has been modified so that data is sorted in
ascending order before it’s passed to the outer query. The WHERE clause has
also been changed to select only the first three books shown in the results. In this
case, the lowest profit generated is $3.20, the next lowest profit is $7.45, and the
third lowest profit is $8.63. Although the query actually returns the lowest N values,
it’s still considered TOP-N analysis because the results consist of the top N
ROWNUMs.

Oracle 12c introduced a new row_limiting_clause that simplifies the TOP-N
queries even further. The clause allows a specific number or percent of rows to be
included in the result set. In addition, an offset option may be used to skip a specified
number of rows within the results. Let’s redo the previous query that identified the
three books with the lowest profit amount. Figure 13-33 accomplishes the same task
by simply adding a fetch first # rows option at the end of the query. Compare this to
the coding used in Figure 13-32 and note how the row_limiting_clause has simplified
the query.

12c

525

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-33 First # rows fetch option

The new clause also allows a percentage of rows to be specified for the result set
rather than a specific number of rows. Figure 13-34 modifies the fetch clause to specify
25% of the rows are to be returned.

FIGURE 13-34 First % rows fetch option

526

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An offset option is also available and allows a number of rows to be skipped prior to
rows being included in the result set. For example, let’s complete a query that will return
the three books with the lowest profit amount; however, the books with the lowest two
profit amounts should be eliminated or skipped. An offset option has been added before
the Fetch Next clause in the query shown in Figure 13-35. Notice the first two rows shown
in the previous result set shown in Figure 13-33 are no longer included in the output.

FIGURE 13-35 Offset option to skip rows

NOTE: Explore Oracle documentation for further options available in association with
the row_limiting_clause. For example, a “with ties” option is available to assist in
managing rows returned that have the same sorting value.

C R E A T I N G A M A T E R I A L I Z E D V I E W

A materialized view enables you to store data retrieved by the view query and reuse this
data without executing the view query again. In other words, a materialized view allows
replicating data. These views are often referred to as “snapshots,” as they take a picture
or capture a set of data at a specific point in time. The data already exists in the
underlying tables, so why would you want to replicate it? Several business needs make
materialized views useful:

• Complex queries or queries on large databases often require a lot of
processing, which can affect system users. Most businesses want to maintain
optimal performance for transactional processing. Replicating data for
reporting and analysis allows dedicating system resources to transactional
processes.

527

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• Remote users could improve query performance by replicating data to a local
database. Instead of transferring data across long distances, a local copy
could be used for satellite offices.

• Data analysis needs might require freezing data for a specific time for
comparison purposes.

Materialized views also have some disadvantages. First, additional storage space
is needed for the copied data. Second, if modifications are made to data via the
materialized view, these changes must be synchronized with underlying tables.
Finally, if data in the materialized view is updated often, the reduction in processing
overhead might be minimal because a materialized view must physically store the
results.

Creating a materialized view, shown in Figure 13-36, is similar to creating the views
you’ve worked with in this chapter. A number of additional options are available, such as
defining the data refresh schedule and determining whether data in the view should be
read only.

FIGURE 13-36 Creating a materialized view named CUSTBAL_MV

The REFRESH clause in this example uses the COMPLETE option, which indicates
that the data should be reconstructed from scratch. Other options are available, such as
FAST, which applies only data changes. The START WITH clause indicates that the initial
materialized view should be created immediately (the SYSDATE option). It also
establishes a schedule to rebuild the materialized view every week by including the NEXT
clause (with SYSDATE+7).

As shown in Figure 13-37, you can query the materialized view in the same way
you query views with no physical properties (in other words, that don’t store a copy of
the data).

528

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-37 Query a materialized view

You remove a materialized view with a DROP command containing the keyword
MATERIALIZED, as shown in Figure 13-38. Notice that the first DROP command fails
because it doesn’t include the MATERIALIZED keyword.

529

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 13-38 Drop a materialized view

N O T E

Tables in other databases, both Oracle and non-Oracle, can be queried by using database links. See
the Oracle documentation for more information on creating and using database links.

530

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter Summary

• A view is a temporary or virtual table used to retrieve data stored in underlying
database tables.

• The view query must be executed each time the view is used.
• A view can be used to simplify queries or restrict access to sensitive data.
• A view is created with the CREATE VIEW command.
• A view can’t be modified. To change a view, it must be dropped and then

re-created, or the CREATE OR REPLACE VIEW command must be used.
• Any DML operation can be performed on a simple query if it doesn’t violate a

constraint.
• A view containing expressions or functions or joining multiple tables is considered

a complex view.
• A complex view can be used to update only one table. The table must be a key-

preserved table.
• Data can’t be added to a view column containing an expression.
• DML operations aren’t permitted on non-key-preserved tables.
• DML operations aren’t permitted on views that include group functions, a GROUP

BY clause, the ROWNUM pseudocolumn, or the DISTINCT keyword.
• Oracle 12c assigns a row number to every row in a table to indicate its

position in the table. The row number can be referenced by the keyword
ROWNUM.

• A view can be dropped with the DROP VIEW command. The data isn’t affected
because it exists in the original tables.

• An inline view can be used only by the current statement and can include an
ORDER BY clause.

• CROSS and OUTER APPLY methods allow inline views in the FROM clause to
reference columns from other tables in the query.

• TOP-N analysis uses the ROWNUM of sorted data to determine a range of top
values.

• Using a row_limiting_clause at the end of a query simplifies TOP-N analysis with
fetch and skip options to define the rows to be returned.

• Materialized views physically store view query results.

531

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 13 Syntax Summary

The following table summarizes the syntax you have learned in this chapter. You can use the
table as a study guide and reference.

Syntax Guide

Element Command Syntax Example

Command to create
a new
view

CREATE [FORCE|NOFORCE]
VIEW viewname
(columnname,...)
AS subquery
[WITH CHECK OPTION
[CONSTRAINT
constraintname]]

[WITH READ ONLY];

CREATE VIEW inventory
AS SELECT isbn, title,
retail price

FROM books
WITH READ ONLY;

Command to replace
an existing view

CREATE OR REPLACE
[FORCE|NOFORCE]
VIEW viewname
(columnname,...)
AS subquery
[WITH CHECK OPTION
[CONSTRAINT
constraintname]]

[WITH READ ONLY] ;

CREATE OR REPLACE
VIEW inventory

AS SELECT isbn, title,
retail price

FROM books;

Command to drop
a view

DROP VIEW viewname; DROP VIEW inventory;

Command to create an
inline view

SELECT columnname,...
FROM (subquery)
WHERE ROWNUM <= N;

SELECT title, profit
FROM (SELECT title,
retail-cost profit
FROM books
ORDER BY retail-cost
DESC)
WHERE ROWNUM <= 5;

Command to create a
materialized view

CREATE MATERIALIZED VIEW
viewname
[REFRESH option]
[START WITH date]
AS subquery;

CREATE MATERIALIZED VIEW
custbal_mv
REFRESH COMPLETE
START WITH SYSDATE NEXT
SYSDATE + 7

AS SELECT customer#, city,
state, order#,

SUM(quantity*retail) Amtdue
FROM customers JOIN orders

USING (customer#)
JOIN orderitems
USING (order#)

JOIN books USING (isbn)
GROUP BY customer#, city,
state, order#;

532

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

1. How is a simple view different from a complex view?

2. Under what circumstances is a DML operation not allowed on a simple view?

3. When should the FORCE keyword be used in the CREATE VIEW command?

4. What’s the purpose of the WITH CHECK OPTION constraint?

5. List the guidelines for DML operations on complex views.

6. How do you ensure that no user can change the data displayed by a view?

7. What’s the difference between a key-preserved and a non-key-preserved table?

8. What command can be used to modify a view?

9. What’s unique about materialized views compared with other views?

10. What happens to the data displayed by a view when the view is deleted?

Multiple Choice

To answer the following questions, refer to the tables in the JustLee Books database. Questions
1–7 are based on successful execution of the following statement:

CREATE VIEW changeaddress
AS SELECT customer#, lastname, firstname, order#,
shipstreet, shipcity, shipstate, shipzip

FROM customers JOIN orders USING (customer#)
WHERE shipdate IS NULL
WITH CHECK OPTION;

1. Which of the following statements is correct?

a. No DML operations can be performed on the CHANGEADDRESS view.

b. The CHANGEADDRESS view is a simple view.

c. The CHANGEADDRESS view is a complex view.

d. The CHANGEADDRESS view is an inline view.

2. Assuming there’s only a primary key, and FOREIGN KEY constraints exist on the
underlying tables, which of the following commands returns an error message?

a. UPDATE changeaddress

SET shipstreet = '958 ELM ROAD'

WHERE customer# = 1020;

b. INSERT INTO changeaddress

VALUES (9999, 'LAST', 'FIRST', 9999,

'123 HERE AVE', 'MYTOWN', 'AA' 99999);

c. DELETE FROM changeaddress

WHERE customer# = 1020;

533

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

d. all of the above

e. only a and b

f. only a and c

g. none of the above

3. Which of the following is the key-preserved table for the CHANGEADDRESS view?

a. CUSTOMERS table

b. ORDERS table

c. Both tables together serve as a composite key-preserved table.

d. none of the above

4. Which of the following columns serves as the primary key for the CHANGEADDRESS
view?

a. Customer#

b. Lastname

c. Firstname

d. Order#

e. Shipstreet

5. If a record is deleted from the CHANGEADDRESS view based on the Customer# column,
the customer information is then deleted from which underlying table?

a. CUSTOMERS

b. ORDERS

c. CUSTOMERS and ORDERS

d. Neither—the DELETE command can’t be used on the CHANGEADDRESS view.

6. Which of the following is correct?

a. ROWNUM can’t be used with the view because it isn’t included in the results the
subquery returns.

b. The view is a simple view because it doesn’t include a group function or a GROUP BY
clause.

c. The data in the view can’t be displayed in descending order by customer number
because an ORDER BY clause isn’t allowed when working with views.

d. all of the above

e. none of the above

7. Assuming one of the orders has shipped, which of the following is true?

a. The CHANGEADDRESS view can’t be used to update an order’s ship date because of
the WITH CHECK OPTION constraint.

b. The CHANGEADDRESS view can’t be used to update an order’s ship date because
the Shipdate column isn’t included in the view.

534

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. The CHANGEADDRESS view can’t be used to update an order’s ship date because
the ORDERS table is not the key-preserved table.

d. The CHANGEADDRESS view can’t be used to update an order’s ship date because
the UPDATE command can’t be used on data in the view.

Questions 8–12 are based on successful execution of the following command:

CREATE VIEW changename

AS SELECT customer#, lastname, firstname

FROM customers

WITH CHECK OPTION;

Assume that the only constraint on the CUSTOMERS table is a PRIMARY KEY constraint.

8. Which of the following is a correct statement?

a. No DML operations can be performed on the CHANGENAME view.

b. The CHANGENAME view is a simple view.

c. The CHANGENAME view is a complex view.

d. The CHANGENAME view is an inline view.

9. Which of the following columns serves as the primary key for the CHANGENAME view?

a. Customer#

b. Lastname

c. Firstname

d. The view doesn’t have or need a primary key.

10. Which of the following DML operations could never be used on the CHANGENAME view?

a. INSERT

b. UPDATE

c. DELETE

d. All of the above are valid DML operations for the CHANGENAME view.

11. The INSERT command can’t be used with the CHANGENAME view because:

a. A key-preserved table isn’t included in the view.

b. The view was created with the WITH CHECK OPTION constraint.

c. The inserted record couldn’t be accessed by the view.

d. None of the above—an INSERT command can be used on the table as long as the
PRIMARY KEY constraint isn’t violated.

12. If the CHANGENAME view needs to include the customer’s zip code as a means of
verifying the change (that is, to authenticate the user), which of the following is true?

a. The CREATE OR REPLACE VIEW command can be used to re-create the view with
the necessary column included in the new view.

b. The ALTER VIEW … ADD COLUMN command can be used to add the necessary
column to the existing view.

535

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. The CHANGENAME view can be dropped, and then the CREATE VIEW command
can be used to re-create the view with the necessary column included in the new view.

d. All of the above can be performed to include the customer’s zip code in the view.

e. Only a and b include the customer’s zip code in the view.

f. Only a and c include the customer’s zip code in the view.

g. None of the above includes the customer’s zip code in the view.

13. Which of the following DML operations can’t be performed on a view containing a group
function?

a. INSERT

b. UPDATE

c. DELETE

d. All of the above can be performed on a view containing a group function.

e. None of the above can be performed on a view containing a group function.

14. You can’t perform any DML operations on which of the following?

a. views created with the WITH READ ONLY option

b. views that include the DISTINCT keyword

c. views that include a GROUP BY clause

d. All of the above allow DML operations.

e. None of the above allow DML operations.

15. A TOP-N analysis is performed by determining the rows with:

a. the highest ROWNUM values

b. a ROWNUM value greater than or equal to N

c. the lowest ROWNUM values

d. a ROWNUM value less than or equal to N

16. To assign names to the columns in a view, you can do which of the following?

a. Assign aliases in the subquery, and the aliases are used for the column names.

b. Use the ALTER VIEW command to change column names.

c. Assign names for up to three columns in the CREATE VIEW clause before the
subquery is listed in the AS clause.

d. None of the above—columns can’t be assigned names for a view; they must keep their
original names.

17. Which of the following is correct?

a. The ORDER BY clause can’t be used in the subquery of a CREATE VIEW command.

b. The ORDER BY clause can’t be used in an inline view.

c. The DISTINCT keyword can’t be used in an inline view.

d. The WITH READ ONLY option must be used with an inline view.

536

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18. If you try to add a row to a complex view that includes a GROUP BY clause, you get which
of the following error messages?

a. virtual column not allowed here

b. data manipulation operation not legal on this view

c. cannot map to a column in a non-key-preserved table

d. None of the above—no error message is returned.

19. A simple view can contain which of the following?

a. data from one or more tables

b. an expression

c. a GROUP BY clause for data retrieved from one table

d. five columns from one table

e. all of the above

f. none of the above

20. A complex view can contain which of the following?

a. data from one or more tables

b. an expression

c. a GROUP BY clause for data retrieved from one table

d. five columns from one table

e. all of the above

f. none of the above

Hands-On Assignments

To perform the following assignments, refer to the tables in the JustLee Books database.

1. Create a view that lists the name and phone number of the contact person at each
publisher. Don’t include the publisher’s ID in the view. Name the view CONTACT.

2. Change the CONTACT view so that no users can accidentally perform DML operations on
the view.

3. Create a view called HOMEWORK13 that includes the columns named Col1 and Col2 from
the FIRSTATTEMPT table. Make sure the view is created even if the FIRSTATTEMPT
table doesn’t exist.

4. Attempt to view the structure of the HOMEWORK13 view.

5. Create a view that lists the ISBN and title for each book in inventory along with the name
and phone number of the person to contact if the book needs to be reordered. Name the
view REORDERINFO.

6. Try to change the name of a contact person in the REORDERINFO view to your name.
Was an error message displayed when performing this step? If so, what was the cause
of the error message?

537

Views

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7. Select one of the books in the REORDERINFO view and try to change its ISBN. Was an error
message displayed when performing this step? If so, what was the cause of the error message?

8. Delete the record in the REORDERINFO view containing your name. (If you weren’t able to
perform #6 successfully, delete one of the contacts already listed in the table.) Was an error
message displayed when performing this step? If so, what was the cause of the error message?

9. Issue a rollback command to undo any changes made with the preceding DML operations.

10. Delete the REORDERINFO view.

Advanced Challenge

To perform the following activity, refer to the tables in the JustLee Books database.
The Marketing Department of JustLee Books is about to begin an aggressive marketing

campaign to generate sales to repeat customers. The strategy is to look at existing customers’
previous purchases, and based on the categories from which these customers have made
purchases, JustLee Books will send promotional information about other books in the same
category that are highly profitable books for the company.

The Marketing Department has requested that you identify the five most frequently
purchased books and the percentage of profit each book generates. The percentage of profit
can be calculated by using the formula ((retail-cost)/cost*100). The employees in the
Marketing Department will use the potential profitability of the marketing campaign to determine
how much money to budget for the campaign.

Provide an SQL statement along with the output to respond to the Marketing Department’s
request.

Case Study: City Jail

Note: This assignment assumes you have run the CityJail_8.sql script from Chapter 8, which
makes all database objects available for completing this case study.

The City Jail Technologies Department is constructing an application to allow users in the
Crime Analysis Unit to query data more easily. This system requires creating a number of
views, described in the following list. Provide the SQL statement to perform each task and test
your views with a query.

1. Create a statement that always returns the names of the three criminals with the highest
number of crimes committed.

2. Create a view that includes details for all crimes, including criminal ID, criminal name,
criminal parole status, crime ID, date of crime charge, crime status, charge ID, crime code,
charge status, pay due date, and amount due. This view shouldn’t allow performing any
DML operations. Each time the view is used in the application, the data should be queried
from the database. (For example, each use of the view should reflect the most current data
in the database.)

3. Create a view that includes all data for officers, including the total number of crimes in which
they participated in filing charges. To speed up the officer queries, store this view data and
schedule the data to be updated every two weeks.

538

Chapter 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX A
TABLES FOR THE JUSTLEE
BOOKS DATABASE

The tables created by running the JLDB_Build.sql script include CUSTOMERS, BOOKS,
ORDERS, ORDERITEMS, AUTHOR, BOOKAUTHOR, PUBLISHER, and PROMOTION. This
appendix shows the initial structure and contents for each table.

N O T E

Keep in mind that you modify these tables’ structures and data as you progress through the textbook.

CUSTOMERS Table

FIGURE A-1 Structure of the CUSTOMERS table

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE A-2 Data in the CUSTOMERS table

BOOKS Table

FIGURE A-3 Structure of the BOOKS table

540

Appendix A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE A-4 Data in the BOOKS table

ORDERS Table

FIGURE A-5 Structure of the ORDERS table

541

Tables for the Justlee Books Database

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE A-6 Data in the ORDERS table

ORDERITEMS Table

FIGURE A-7 Structure of the ORDERITEMS table

542

Appendix A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE A-8 Data in the ORDERITEMS table

AUTHOR Table

FIGURE A-9 Structure of the AUTHOR table

543

Tables for the Justlee Books Database

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE A-10 Data in the AUTHOR table

BOOKAUTHOR Table

FIGURE A-11 Structure of the BOOKAUTHOR table

544

Appendix A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE A-12 Data in the BOOKAUTHOR table

PUBLISHER Table

FIGURE A-13 Structure of the PUBLISHER table

FIGURE A-14 Data in the PUBLISHER table

545

Tables for the Justlee Books Database

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROMOTION Table

FIGURE A-15 Structure of the PROMOTION table

FIGURE A-16 Data in the PROMOTION table

546

Appendix A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX B
SQL*PLUS AND SQL
DEVELOPER OVERVIEW

I N T R O D U C T I O N

SQL*Plus and SQL Developer are two software tools for connecting to the Oracle
database, executing SQL commands, and viewing the results. SQL*Plus is a basic
command-line tool; SQL Developer has a graphical user interface. Both tools are
installed by default with an Oracle 12c server installation and can also be installed on
other (client) machines to connect to the Oracle server. In previous Oracle versions,
Oracle 9t and Oracle 10g, a browser-based SQL*Plus tool called iSQL*Plus was
available. iSQL*Plus is no longer supported by Oracle and isn’t available with Oracle
12c. This appendix gives you an overview of using the SQL*Plus and SQL Developer
software tools.

T I P

Keep in mind that the SQL language isn’t case sensitive, no matter which client tool you’re using.

S Q L * P L U S

Because SQL*Plus is a command-line tool, it can seem a bit awkward for those
accustomed to GUIs. However, this tool is almost always available for an Oracle
installation, so it’s worth becoming familiar with it. In the program listing on your
operating system, you should find an SQL*Plus selection under the Oracle entries.
When you start the software, you’re prompted for login information, as shown in
Figure B-1.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE B-1 The SQL*Plus login window

You need two pieces of information for this login: a username and a password. First,
you’re prompted to enter a username. If the account name is SCOTT, for example, simply
type it and press Enter, if you’re on the Oracle server machine. If you’re on a client
machine that connects to the Oracle server, you also need to enter a host string to
identify the Oracle server to be used. The host string (also called service name) is set up
when SQL*Plus is installed. To include the host string at login, use the format
username@host_string, such as SCOTT@orcl. After pressing Enter, you’re prompted for a
password. Type your password and press Enter again.

After you log in successfully, a “connected” message is displayed, followed by the
SQL prompt, where you enter the SQL query. As you type each line and press Enter, the
line number is displayed. When you enter a semicolon and press Enter, the query is
executed. Figure B-2 is an example of an executed query.

FIGURE B-2 Executing a query in SQL*Plus

Appendix B

548

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unfortunately, if you make an error, you can’t just press Backspace or Delete to
delete previous lines. There are a few methods for modifying statements. One is entering
statements in a text editor; on most Windows systems, the default text editor is Notepad.
If you want to use another program (or if no editor is defined), type DEFINE_EDITOR¼
NOTEPAD (or the name of the editor you want) at the SQL> prompt, and then press
Enter.

N O T E

If you attempt to change the default editor and get a permissions error message, you might not be
allowed to make changes to this system setting. If this happens, notify your instructor.

To enter commands in the text editor, follow these steps:

1. To access the editor, type edit at the SQL> prompt and press Enter. Because
you didn’t include a filename, the buffer’s contents (the most recent SQL
statement you executed) are displayed in the editor, which is using the
default filename afiedt.buf. The buffer display enables you to use any editor
features—such as cut and paste, insert, and delete—to make changes to your
SQL statement. (Note: If you intend to save the file containing your
statement, supply a filename when you enter the EDIT command, instead of
leaving the default afiedt.buf filename.)

2. After you close the editor, the SQL statement that was in the editor when
you exited is displayed in the SQL*Plus window.

3. To execute the corrected statement, type / (a slash) at the SQL> prompt and
press Enter.

Some users take this method a step further and enter all their statements in a text file
and then copy and paste from the text file to the SQL*Plus window.

If you prefer not to use an editor, you can use the SQL*Plus editing commands. To
view what’s currently in the SQL*Plus buffer, do the following:

1. Type the letter L, the word LIST, or a semicolon (;) at the SQL> prompt and
press Enter.

2. To display the last line stored in the buffer, type LIST LAST and press Enter.
3. If you need to delete a line from the buffer, type DEL followed by the line

number and press Enter.
4. To add lines to the stored SQL statement, type INPUT (or the letter I) and

press Enter. You can then add the new lines of text. To add text to the end of
the current line in the buffer, type APPEND (or the letter A) and the text to
be added, and then press Enter.

You can experiment with the editing commands by entering the SQL statement
shown in Figure B-3.

SQL*Plus and SQL Developer Overview

549

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SELECT title, cost
FROM books;

FIGURE B-3 A simple SELECT statement

Suppose that after pressing Enter, you realize that you wanted only the books from
the publisher with the Pubid 4. To revise the query you just entered, do the following:

1. Type LIST to redisplay the SQL statement you just entered. Notice the
asterisk (*) next to line 2, which indicates it’s the current line.

2. Because you want to add another line to the SQL statement, type INPUT and
press Enter. You can then enter additional lines immediately after the
current line. Line 2 was the current line when you entered INPUT, so a 3 is
displayed after you press Enter.

3. Type WHERE pubid¼4; and press Enter.

After looking over the results, you realize you forgot to include the retail price for
each book. To include the Retail column in the display, you need to alter the first line of
the SQL statement you entered. Here’s how to make this change:

1. Type LIST and press Enter to review the current statement in the buffer.
Notice that the asterisk now indicates that line 3 is the current line. If you
append the additional column name at this time, it’s appended to line 3.

2. To set line 1 as the current line, type 1 (the numeral) at the SQL> prompt
and press Enter. Line 1 is displayed with an asterisk, indicating that it’s now
the current line.

3. At the SQL> prompt, type A , retail and press Enter to add a comma and the
word “retail” to the end of line 1. After pressing Enter, line 1 is displayed
again with the additional text.

4. Type L (or LIST) and press Enter to see the revised SQL statement.
5. To execute the revised SQL statement, type / (or RUN) and press Enter.

After examining the new output, you realize that you need the ISBN of each book, not
its title. You can use the CHANGE command to perform a simple search-and-replace
operation to change Title to ISBN in the first line of the SQL statement. The syntax of the
CHANGE command is C\ old\ new\. (The last backslash is optional.) Make this change
by following these steps:

1. To correct the first line, you need to make line 1 the current line. Type 1 at
the SQL> prompt and press Enter.

2. After the first line is displayed, type C\title\ISBN\ and press Enter.
3. The revision for line 1 is displayed. If it’s correct, run the statement and

examine the new output.

To close the SQL*Plus session, type EXIT; at the SQL prompt and press Enter.

Appendix B

550

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

For more information on using SQL*Plus, review the SQL*Plus User’s Guide and Reference in the
Oracle documentation library at the OTN Web site.

S Q L D E V E L O P E R

In the program listing on your operating system, you should find an SQL Developer
selection under the Oracle entries. When you start the software, you see the initial
window shown in Figure B-4.

FIGURE B-4 The initial SQL Developer window

On the left is a list of available connections. These connections must be configured to
identify the Oracle database to be used. To connect, double-click the connection you
want, and the login window shown in Figure B-5 is displayed.

FIGURE B-5 The SQL Developer login window

SQL*Plus and SQL Developer Overview

551

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T I P

If no connections are available, right-click the Connections node on the left and click New Connection
to define the Oracle database connection information.

After you’re connected, the object navigator pane on the left lists several database
object types, as shown in Figure B-6. On the right is the work area where you enter SQL
statements in the top pane and view the results in the bottom pane.

View resultsObject navigator

Enter SQL statements

FIGURE B-6 The SQL Developer interface

Enter the SQL statement shown in Figure B-7 in the top pane of the work area, and
then click the Execute Statement button to process the statement and view the results. If
you right-click the results pane, you see a number of additional options, such as Export
Data.

Appendix B

552

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Execute Statement button

Query output

FIGURE B-7 Executing a query in SQL Developer

In this textbook, SELECT statements are processed with the Execute Statement
button and all other statements are processed with the Run Script button. Figure B-8
shows using the Run Script option, which allows you to process multiple statements at
once and helps you see execution messages more easily for statements, such as DML
actions.

SQL*Plus and SQL Developer Overview

553

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Run Script button

FIGURE B-8 Using the Run Script option

N O T E

For more information on using SQL Developer, review the SQL Developer User’s Guide in the Oracle
documentation library at the OTN Web site.

Appendix B

554

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX C
ORACLE RESOURCES

The following list of resources has been provided to assist students receiving
Oracle 12c database training or considering careers that require using Oracle
products.

Oracle Academic Initiative (OAI)
The Oracle Academic Initiative (OAI) is a result of the Oracle Corporation’s effort to
provide curricula and other resources to the higher-education community. Students
enrolled at an institution participating in the OAI have access to benefits such as discount
vouchers for certification exams, discounts on certification preparation software, and a
free subscription to Oracle Magazine. Visit the Oracle Web site at http://oai.oracle.com
for more information.

Oracle Certification Program (OCP)
The Oracle Certification Program (OCP) provides certification paths for both database
administrators and application developers. Certification is based on successful completion
of a series of exams. Oracle offers several levels of certification, starting with the Oracle
Certified Associate. You can find current information about the OCP at www.Oracle.com
/education/certification.

Oracle Technology Network (OTN)
The Oracle Technology Network (OTN, http://otn.Oracle.com) provides several
services to registered members. For example, members can download trial versions
of Oracle software products and access discussion groups for help with technical
issues. In addition, the site has an extensive documentation area, including
reference manuals for SQL, PL/SQL, installation procedures, and so on. Most
documentation is available in both HTML and PDF format and can be downloaded.
Membership is free.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

International Oracle Users Group (IOUG)
The International Oracle Users Group (IOUG) is composed of more than 100 local and
regional user groups who meet regularly to share information about Oracle products.
Members of IOUG can access the repository of knowledge accumulated from people who
work with Oracle products on a daily basis. In addition, members can receive
publications, discounts, and special offers from a variety of vendors and have access to
discussion forums. Contact information for user groups, conferences, and more is
available on the IOUG Web site at www.ioug.org.

Appendix C

556

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX D
SQL*LOADER

I N T R O D U C T I O N

SQL*Loader is a utility packaged with Oracle to load data from external files
into tables. It gives you more flexibility for reading data in different formats and
filtering and manipulating data during load operations. This appendix includes
two examples of file loads to get you acquainted with the tool. You can explore
more options in the SQL*Loader documentation at the Oracle Technology Network
Web site.

R E A D A F I X E D F I L E F O R M A T

SQL*Loader typically operates with two components: a control file with instructions for
the data load and a data file. Both files are plaintext or ASCII files. The control file must
have the extension .ctl, but there’s no requirement for the data file’s extension. Figure D-1
shows the contents of these two files and the command to call SQL*Loader and execute
the data load.

The data is formatted in fixed placement, so instructions in the control file identify
the specific positions to read for data that feeds into each column. For example, the value
in character spaces 1 to 3 on each line in the data file is loaded (inserted into) the Prodno
column.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

101 ProdA 25.20
102 ProdB 32.40
103 ProdC 27.65

LOAD D ATA
 INFILE 'D:\test.dat'
 INTO TABLE testprod

(prodno POSITION(01:03) INTEGER EXTERNAL,
pname POSITION(05:09) CHAR,
p_amt POSITION(13:17) DECIMAL EXTERNAL)

sqlldr USERID=scott/regitx CONTROL=D:\test.ctl LOG=D:\test.log

Test.dat

Test.ctl

Execute the load

Data
file

Control
file

Oracle table
name

Indicates layout of
data to read

FIGURE D-1 SQL*Loader example—fixed file format

SQL*Loader is a command-line utility that uses a number of arguments. The
command shown in Figure D-2 (the first line) contains arguments for specifying the user
login, identifying the control file, and identifying the log file.

FIGURE D-2 SQL*Loader command execution

The log file contains information on results of the load execution, as shown in
Figure D-3. The list at the bottom indicates rows rejected based on errors, filtering
conditions, or NULL values.

Appendix D

558

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Results
summary

FIGURE D-3 An SQL*Loader log file

R E A D A D E L I M I T E D F I L E

Another common data format is a delimited file, in which data is separated by a specified
character. The example in Figure D-4 loads a comma-delimited file. The field termination
character is identified in the control file, which also specifies the order of columns into
which the data should be read. In addition, if a table already contains data and you need
the loader action to add the data to existing rows, you must include the APPEND option in
the control file, as shown in this example. If the APPEND option isn’t included, the table
must be empty for SQL*Loader to operate correctly.

SQL*Loader

559

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

104,ProdD,25.20
105,ProdE,32.40
106,ProdF,27.65

LOAD DATA
 INFILE 'D:\test2.dat'
 APPEND
 INTO TABLE testprod
 FIELDS TERMINATED BY ","
 (prodno, pname, p_amt)

Test2.dat

Test2.ctl

Table columns that
receive the loaded data

APPEND option allows adding
data to a table

Indicates data read is
separated by commas

FIGURE D-4 SQL*Loader example—comma-delimited file format

Appendix D

560

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX E
SQL TUNING TOPICS

I N T R O D U C T I O N

Tuning is an ongoing effort to make your applications process efficiently so that
resource use is minimized and response speed is increased. Typically, you should
consider three general areas for optimizing application performance: hardware/
networking, database configuration, and application source code. SQL is often a major
component of application code tuning efforts because database interaction can represent
a major portion of processing time. This appendix introduces SQL tuning topics in the
context of an Oracle environment; however, these concepts also apply to tuning SQL in
most databases. Keep in mind that this appendix is simply a brief introduction to SQL
tuning to give you an overview of the basic concepts and a basis for further studies on
SQL tuning.

T U N I N G C O N C E P T S A N D I S S U E S

To begin tuning code, you must become familiar with methods that help identify
issues affecting coding efficiency. You need to be able to identify which statements
cause lengthy execution times and understand how the database server processes
statements to determine what improvements could be applied. After attempting a
modification, you need to be able to determine whether it succeeded in improving
performance.

In this section, you explore some methods of identifying resource-intense SQL
statements. Next, you examine how statement processing and options are managed in
Oracle, and then investigate database features, such as the explain plan, to find processing
information that’s helpful in reviewing performance.

Identifying Problem Areas in Coding
To begin tuning efforts, developers need to identify the areas in source code that are likely
candidates for tuning. The following basic methods are available for this task:

• The application-testing phase should simulate actual operations and include
end users. Feedback from end users helps pinpoint problem areas, especially
slow response times. Set up a procedure that makes it easy for testers to

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

document where in the application they encountered trouble and what
specific actions caused problems. This information can lead you to the coding
that needs review.

• Oracle 12c includes some built-in automatic tuning capabilities. One is the
SQL Tuning Advisor, which helps you identify problem SQL statements and
makes recommendations for tasks, such as collecting object statistics or
creating an index. The SQL Tuning Advisor is available in the Oracle
Enterprise Manager console.

N O T E

Oracle Enterprise Manager is an administrative GUI tool available with the Oracle installation files.

• The V_$SQLAREA view provides execution details, such as disk and memory
reads, for all statements processed since the database startup. Use the
DESCRIBE command on the view to list all available columns of data. Here
are examples of statistics this view provides:
• Number of executions—Indicates how many times a statement has been

processed, which helps you identify frequently used statements
• Number of disk reads—Reflects the total number of physical reads for a

given statement
• Disk reads divided by number of executions—Determines the number of

reads per execution of a given statement

When you’re deciding which statements need tuning, focus on the number of reads
per statement execution. A high number of reads indicates that you might be able to
improve performance by modifying the statement. Another important statistic in the
V_$SQLAREA view is the number of buffer gets, which is the number of memory reads for
the statement. You can query the Buffer_Gets column to see the number per statement
execution. A high number of buffer reads can indicate that an index is needed or a join
could be improved.

N O T E

DBA accounts (such as SYSTEM) have access to the V_$SQLAREA view; however, general users
aren’t typically granted access to this view by default. Usually, the DBA creates a public synonym
named V$SQLAREA and then grants users access via the view or synonym.

You can also enable the SQL TRACE feature for a session, and statistics on SQL
statement execution during that session can be stored for review. The statistics are saved
in an operating system file that must be converted to a readable format with the TKPROF
executable file. The converted file can then be viewed with simple word-processing
software, such as WordPad.

Appendix E

562

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After you’ve identified problem SQL statements, you need to determine possible
tuning actions and explore questions such as “Could an index improve the performance of
this statement?” Before examining some specific tuning examples, however, you must
know how Oracle processes an SQL statement.

Processing and the Optimizer
Before tackling performance tuning, you need to understand the SQL processing
architecture so that you can determine how statements can be modified to execute more
efficiently. SQL processing contains the components shown in Figure E-1: parser,
optimizer, row source generator, and execution engine.

SQL query
Query result

Execution
engine

Parser

Optimizer
Estimates of

selectivity/cardinality
and cost

Row source
generator

Database
statistics

FIGURE E-1 SQL processing components

The parser checks for correct statement syntax and ensures that all referenced
objects exist. The optimizer determines the most efficient way to process the statement
and creates an execution plan for the statement to follow. For example, the optimizer
decides whether an index is used and in what order tables are joined—in other words,
factors that determine how efficiently your statements are processed. The row source
generator sends the execution plan and the row source for each step in the plan to the
execution engine. A row source returns a set of rows for the applicable step. The
execution engine processes each row source and carries out the execution plan to
produce the final results.

In versions before Oracle 10g, the Oracle database server contains two statement
optimizers—rule-based and cost-based—that follow different methods to determine how a
statement is processed. The rule-based optimizer, the older method, uses a list of rules to

SQL Tuning Topics

563

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

determine processing. For example, the rule-based engine typically uses an index if one is
available, even if it might not be beneficial.

Oracle 12c now includes only the cost-based optimizer (CBO), a newer method that
uses database object statistics, such as distribution of data, to determine how best to
process statements. If only certain rows are being retrieved from a small table, for
example, the CBO might decide not to use an index, as it wouldn’t improve the query’s
performance. To determine the execution plan, the CBO estimates the following items
based on database statistics:

• Selectivity—The proportion of rows from the row set to be used
• Cardinality—The distribution of data for all rows in the row set
• Cost—The units of resources used, including disk I/O, CPU use, and memory use

For the CBO to make the best decisions, it needs current database object statistics.
By default, Oracle 12c gathers statistics on all database objects that have a daily
scheduled job. The schedule for updating statistics can be modified as needed, depending
on the database’s volatility (frequency of changes). In addition, the analysis of objects
used to gather statistics might need to be done manually by issuing an ANALYZE
command or using the DBMS_STATS built-in package when new objects are added to the
database. In versions before Oracle 12c, automatic statistic gathering isn’t set up by
default, and initiating database object analysis manually is essential to take advantage of
the CBO.

If the CBO can’t find any statistics for an object, dynamic sampling takes effect and
performs random sampling during statement execution. This sampling can slow statement
performance dramatically, however.

The CBO is one of many database settings, and the parameter is named
OPTIMIZER_MODE. The following OPTIMIZER_MODE settings are available in Oracle 12c:

• ALL_ROWS: Optimizes with a goal of achieving the best throughput (use of
the fewest resources). Use this setting, which is the default, to complete the
entire statement.

• FIRST_ROWS_n: Optimizes with a goal of best response time to return the
first n number of rows; n can equal 1, 10, 100, or 1000.

• FIRST_ROWS: Uses a mix of cost and heuristics to find the best plan for fast
delivery of the first few rows.

The CBO uses a goal of best throughput by default. “Best throughput” means it
chooses the execution path that uses the fewest resources to process all rows in the
statement. However, the CBO can run with a goal of optimizing the response time. With
this goal, it generates an execution path that uses the fewest resources to process the first
row the statement accesses.

Applications involving large or batch requests, such as Oracle Reports, usually
optimize for best throughput. Interactive or operational applications, such as those
created with Oracle Forms, should be optimized for best response time because users are
waiting to view feedback. If many rows are returned, users are still interested in getting
the first rows of feedback fast so that they can begin analyzing the results.

So how do you determine how an SQL statement is being processed? The next
section introduces some basic tools for examining statement processing.

Appendix E

564

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Explain Plan
One of the most important items to review for statement performance is the execution or
explain plan for a statement. Recall that the optimizer develops an execution plan that
outlines the specific steps to process a statement. Oracle provides several methods to
review this plan. This section introduces the most common methods: the Tuning Advisor,
the EXPLAIN PLAN FOR command, and the AUTOTRACE tool.

N O T E

The terms “execution plan” and “explain plan” are used interchangeably in this textbook.

You can access the Tuning Advisor in the Oracle Enterprise Manager console. After
selecting a statement to review, you have the option to view the explain plan, as shown in
Figure E-2.

Statement executed:
SELECT d.deptname, p.idproduct, p.productname
 FROM bb_product p, bb_department d
 WHERE p.iddepartment = d.iddepartment;

Explain plan listing in
the SQL Tuning Advisor

Explain Plan Steps

1. Read the entire BB_DEPARTMENT table.

2. Read the entire BB_PRODUCT table.

3. Join the two tables.

4. Return the results for selected columns.

Indents also indicate order
of steps executed

FIGURE E-2 The SQL Tuning Advisor displays the explain plan

Take a closer look at the processing steps outlined by the explain plan. First, the
access path for each table is determined. The access path in this example is a full table
scan. Another common access path is an index. If the query contained a WHERE clause
limiting the rows returned from the BB_PRODUCT table and an index was available for
the filtering column, the table might have been accessed via the index. (You see an
example of this access path later in this section.)

Second, the order in which tables are accessed in a multiple-table query is
determined. In this example, the BB_DEPARTMENT table is read first. Starting a join

SQL Tuning Topics

565

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

operation with the smallest table or the table with the most selective filter is the most
efficient method.

Third, the join method for a multiple-table query is determined. Three common
join methods are nested join loops, sort merges, and hash joins. (These join methods
aren’t joins you include in an SQL statement; they’re methods the Oracle processor
uses internally to handle join operations.) In Figure E-2, a hash join is indicated,
which is appropriate when a large table is being joined to a small table via an
equijoin. A hash table based on the small table is placed in memory and used to
perform the join with the larger table more quickly. Nested join loops are typically
used when joining small subsets of data, and the join condition is based on a column
that can be accessed via an index. In this join method, one table is considered the
outer table and the other is considered the inner table, which is accessed for each
row in the outer table. A sort merge sorts both tables by the join key and then merges
the tables. This join method can be used if the data is already sorted or if the join
type isn’t an equijoin.

With the Oracle AUTOTRACE tool, you can display both the execution plan
and execution statistics. To start the AUTOTRACE tool, issue the SET AUTOTRACE
ON command in SQL*Plus. Table E-1 lists the options you can use when starting
this tool.

TABLE E-1 AUTOTRACE Tool Options

SQL*Plus Command Description

SET AUTOTRACE ON Displays explain plan, statistics, and result set

SET AUTOTRACE ON EXPLAIN Displays explain plan and result set

SET AUTOTRACE ON STATISTICS Displays statistics and result set

SET AUTOTRACE TRACEONLY Displays explain plan and statistics

N O T E

To enable users to use the AUTOTRACE tool, two steps are required. First, a role named PLUSTRACE
must be created and granted to users. The plustrce.sql script in the Oracle database directory
Your_Oracle_Home\sqlplus\admin is used to create this role. Second, a table named PLAN_TABLE
storing the explain plan information must be created in users’ schemas. The utlxplan.sql script in the
Oracle database directory Your_Oracle_Home\rdbms\admin creates this table.

Figure E-3 shows the same SQL statement used earlier with output from the
AUTOTRACE tool.

Appendix E

566

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE E-3 Explain plan and statistics produced by AUTOTRACE

Table E-2 describes the statistics displayed by the AUTOTRACE tool. The explain
plan this tool produces matches the explain plan displayed in the Tuning Advisor. Notice
the SQL*Net statistics, which are helpful in identifying network traffic. In addition, the
consistent reads are the same as the buffer gets covered earlier, and the physical reads
are the same as disk reads.

TABLE E-2 Statistic Definitions

Statistic Description

Recursive calls Number of recursive calls generated at both the user and system level.
Oracle maintains tables used for internal processing. When Oracle
needs to change these tables, it generates an SQL statement internally,
which generates a recursive call.

Db block gets Number of times a CURRENT block was requested.

Consistent gets Number of times a consistent read was requested for a block.

Physical reads Total number of data blocks read from disk. This number equals the
value of “physical reads direct” plus all reads into buffer cache.

SQL Tuning Topics

567

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TABLE E-2 Statistic Definitions (continued)

Statistic Description

Redo size Total amount of redo operations generated in bytes.

Bytes sent via SQL*Net to
client

Total number of bytes sent to the client from the foreground-to-client
processes.

Bytes received via SQL*Net
from client

Total number of bytes received from the client over Oracle Net.

SQL*Net roundtrips to/
from client

Total number of Oracle Net messages sent to and received from the
client.

Sorts (memory) Number of sort operations that were performed completely in memory
and didn’t require any disk writes.

Sorts (disk) Number of sort operations that required at least one disk write.

Rows processed Number of rows processed during the operation.

The EXPLAIN PLAN FOR command produces an explain plan along with a list of
conditions used to perform the query and any warnings. Figure E-4 shows the output of
this command. Notice the warning at the bottom about the use of dynamic sampling. The
tables used in the query were just created, so no statistics exist for them. Therefore,
sampling had to be performed.

Appendix E

568

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EXPLAIN PLAN FOR added
before the query

Query the plan table to
view the explain plan

Conditions used to
perform the query

Explain plan

Warnings

FIGURE E-4 Output of the EXPLAIN PLAN FOR command

Next, modify the query and examine the impact on the explain plan. Figure E-5 shows
the explain plan with an additional condition in the WHERE clause. Also, tables are
analyzed to provide statistics for the optimizer. Notice that because the query now
processes fewer rows, the optimizer selects table indexes to access data and merge data
rows with a sort merge. In addition, the dynamic sampling warning is no longer displayed.

The explain plan cost estimates can be used to determine whether a statement
change has resulted in more efficient performance. However, another useful measure is
the execution time. The next section introduces the timing feature that enables displaying
the statement execution time, which gives you a simple check for seeing whether
response time has improved.

SQL Tuning Topics

569

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Add a condition on the
Idproduct column to
the WHERE clause

Produce statistics
for the tables

Steps now use table indexes and
a sort merge because fewer rows are
processed with the added condition in
the WHERE clause

FIGURE E-5 Examining changes in the explain plan

Timing Feature
Before jumping into examples of SQL statement tuning, it’s worth looking at another basic
tuning tool you can use in SQL*Plus. The timing feature allows developers to measure a
statement’s execution time. Issue the SET TIMING ON command in SQL*Plus to display
time elapsed in hours, minutes, and seconds for each statement. Figure E-6 shows three
executions of the same query with the timing feature on.

Appendix E

570

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Execute the statement
more than once for
true execution time

Turn the timing
feature on

First run takes longer
because of parsing and
caching action

FIGURE E-6 Using the timing feature

In this query, the first execution takes 0.25 seconds, and the second and third queries
take 0.04 seconds each. (Note that the execution time depends on the computer system
being used.) Why the difference in execution times? The first run of a query is cached in
the Oracle server’s memory, so successive runs of the same query can skip parsing,
creating the execution plan, loading into the SQL area, and storing the results in memory.
Before modifying statements in tuning efforts, make sure you use the timing from a
second run of the statement as the base time to improve. If you use the execution time
from the first run as your baseline, you might think you have improved performance
when your modification actually had no effect on the execution time.

S E L E C T E D S Q L T U N I N G G U I D E L I N E S
A N D E X A M P L E S

In this section, you focus on the explain plan and learn how to identify whether statement
modifications affect the plan and potentially affect query performance. Trying
modifications on a test database that resembles the production database in design and
size is important. The database tables used in the following examples are rather small, and
most statements are fairly simple so that you can understand the explain plan and the
specific effects of statement modifications.

SQL Tuning Topics

571

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Avoiding Unnecessary Column Selection
Including columns that aren’t actually needed in a select list can have a detrimental effect
on performance. Take a look at the explain plan for a query on the BB_PRODUCT table.
The AUTOTRACE and SET TIMING ON commands have been issued before the
statements to display the explain plan and execution time. Figure E-7 shows a query on
the BB_PRODUCT table that includes three columns.

Full table
scan performed

FIGURE E-7 Explain plan and execution time for a query

Notice that a full table scan is performed on the BB_PRODUCT table, and the query
execution time is 0.57 seconds. However, what if only the Idproduct column is actually
needed for the query? Could this change affect performance? Figure E-8 shows another
execution of this statement, which includes only the Idproduct column.

Index scan performed

FIGURE E-8 Explain plan and execution time for the modified query

Appendix E

572

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now the only step that needs to be processed is an index scan. A full table scan isn’t
necessary because the index can return the Idproduct value. Keep in mind that an index
contains the value of the indexed columns and the ROWID for the associated row. The
ROWID, a physical address for a table row, is the fastest method for retrieving rows. The
execution time was reduced to 0.45 seconds. This reduction might not seem like a big
difference, but you can imagine that with larger tables and more complex queries, the
increase in performance can be significant.

Index Suppression
Because indexes are one of the central topics in performance tuning, you should learn to
recognize when SQL statements suppress the optimizer from using an index. Index
suppression can occur when a WHERE clause uses a function on a column or compares
different datatype values. For example, Figure E-9 shows a query that includes a condition
in the WHERE clause. No functions are used in the WHERE condition, and an index scan
is used to perform the query.

FIGURE E-9 With no function in the WHERE clause, an index scan is used

The next statement modifies the WHERE clause to add a function so that the query
returns only products with an ID starting with 200. Figure E-10 shows the query with a
modified WHERE clause, using the SUBSTR function on the Idproduct column. Notice
that an index scan is no longer used, and the execution time has increased.

SQL Tuning Topics

573

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE E-10 With a function in the WHERE clause, an index scan is suppressed

How can you perform this query without using the SUBSTR function? In this example,
the BETWEEN operator could be used to perform the same operation. Figure E-11 shows
the query with the BETWEEN operator in the WHERE clause. Notice that an index scan is
used, and execution time is improved.

FIGURE E-11 BETWEEN operator in the WHERE clause, so an index scan is used

Comparing different datatypes can also suppress indexes in statement execution. If a
character column is compared to a numeric value, the index is suppressed. In this case,
the column value is converted internally to a numeric value, so the optimizer considers
this activity the same as using a function on the column value. In Figure E-12, the
Idprod2 column is a copy of the Idproduct column, but it’s a character column, so the
index is suppressed.

Appendix E

574

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Character column value
compared to a numeric value

FIGURE E-12 An implicit conversion suppresses index use

Concatenated Indexes
In performance tuning, you should also consider the use of concatenated indexes (indexes
involving more than one column). The optimizer uses these indexes only when the first
column indexed is included in the WHERE clause’s condition. For example, a
concatenated index named BB_SHOPNAME_IDX that indexes the Lastname and
Firstname columns of the BB_SHOPPER table is used only if the query uses the Lastname
column and if the index is created with the Lastname column first.

Take a look at a few queries to see how the index is used or suppressed. First, the
concatenated index is created with this statement:

CREATE INDEX bb_shopname_idx

ON bb_shopper (lastname, firstname);

Figure E-13 shows a query on the BB_SHOPPER table, which uses the Lastname
column in the SELECT clause. Notice that an index scan is performed because the first
column of the index (Lastname) is used in the WHERE clause’s condition. (The index
would also be used if both the Lastname and Firstname columns were included.)

FIGURE E-13 A concatenated index is used because its first column is included in the WHERE clause

SQL Tuning Topics

575

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now modify the WHERE clause so that only the Firstname column is used, as shown
in Figure E-14. As you can see, the index is no longer used because the first column of the
concatenated index, Lastname, isn’t included in the query condition.

FIGURE E-14 A concatenated index isn’t used

Subqueries
Another area worth exploring is the type of subqueries used. Correlated subqueries are
usually considered more efficient; however, this isn’t always the case. If the row-
filtering condition is in the subquery, an IN operator is typically most efficient. If the
row-filtering condition is in the parent query, the EXISTS operator (correlated
subquery) is typically more efficient. When a subquery isn’t correlated, the inner query
executes first and returns results that are treated like an IN list. Then the outer query
is executed and compared to the inner query’s results. In a correlated subquery, the
outer query executes first, and then the inner query executes for each record returned
from the outer query. Also, using the EXISTS operator terminates the inner query
when a match is found, whereas the IN operator continues until all rows in the inner
query have been processed. Figure E-15 shows whether using an uncorrelated or a
correlated subquery is best.

Appendix E

576

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SELECT productname, price
 FROM bb_product
 WHERE productname IN
 (SELECT productname
 FROM bb_prod_list
 WHERE price = 10);

SELECT productname, price
 FROM bb_product p
 WHERE price = 10
 AND EXISTS
 (SELECT 'x''
 FROM bb_prod_list
 WHERE productname = p.productname);

Row-filtering condition in the subquery;
use the IN operator

Row-filtering condition in the parent query;
use the EXISTS operator

FIGURE E-15 Selecting the type of subquery

Optimizer Hints
Based on your knowledge of the data and a review of the execution plan, you might decide
that the execution plan should be altered to improve performance. With SELECT,
INSERT, UPDATE, and DELETE statements, you can alter the execution plan by using
hints in the statement. Hints are included as comments preceded by a plus sign.

Numerous hints are available and are grouped in the following categories:

• The optimization approach for an SQL statement
• The goal of the cost-based optimizer for an SQL statement
• The access path for a table accessed by the statement
• The join order for a JOIN statement
• A join operation in a JOIN statement

One hint you can see in the access path category is FULL, which forces a full table
scan, regardless of whether an index exists that could be used. The following statement
shows the FULL hint included in a SELECT statement:

SELECT /*+FULL(b)*/ idshopper, firstname, lastname

FROM bb_shopper b

WHERE lastname¼'Parker';

As mentioned, hints are embedded by using comments. The opening comment
symbol, /* , must be followed by a plus sign (þ), and the table name or its alias must be
included. Hints must be placed immediately after the keyword SELECT, INSERT,
UPDATE, or DELETE. A hint ends with the closing comment symbol, */.

If a hint is added incorrectly, it doesn’t usually raise an error; it’s simply ignored.
Therefore, to determine whether changing the execution plan resulted in improving query
performance and to confirm that the hint is being used, make sure you review the
execution plan after adding a hint.

SQL Tuning Topics

577

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This section gives you just a basic introduction to hints; the main idea is to recognize
that you can control the optimizer by using hints. Use hints to modify execution plans and
compare the efficiency of different execution plans. This method is an excellent way to
become more familiar with the optimizer and determine which processing modifications
improve efficiency.

T I P

You can use multiple hints in a single statement by listing all hints, separating each one with a space, in
a single comment area.

N O T E

To explore these topics in more detail, read the Oracle Database Performance Tuning Guide at the OTN
Web site for more in-depth coverage of tuning methods.

Appendix E

578

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX F
SQL IN VARIOUS DATABASES

I N T R O D U C T I O N

ANSI standards provide a common ground that all database vendors build on to include
SQL capabilities in their products. Having common SQL standards makes application
code portable and allows using an application with different databases with few or no
changes required. This capability can be critical when developing an application to
market to organizations that might have different databases. In addition, your department
or company might switch database vendors because of cost or capabilities that are
needed.

On the other hand, developing 100% portable SQL code is challenging. ANSI
standards don’t cover every SQL feature, and many vendors add SQL extensions to
enhance capabilities and differentiate their products from others. Therefore, developers
need to be aware of the nuances of SQL in various database products. Some of the most
important differences are in SQL functions. The following charts are a sampling of specific
SQL differences in Oracle, MySQL, and Microsoft SQL Server.

N O T E

The database versions used in the following SQL comparisons are Oracle 11g, MySQL 5, and SQL
Server 2005.

Suppressing Duplicates

Oracle MySQL Microsoft SQL Server

DISTINCT or UNIQUE
- -

DISTINCT
- -

DISTINCT
- -

SELECT UNIQUE
category

FROM books;

SELECT DISTINCT
category

FROM books;

SELECT DISTINCT
category

FROM books;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Locating a Value in a String

Oracle MySQL Microsoft SQL Server

INSTR
INSTR(value,

expression)
- -

LOCATE
LOCATE(expression,

value, start)
- -

CHARINDEX
CHARINDEX(expression,

value, start)
- -

SELECT INSTR (title,
'SQL')

FROM books;

SELECT LOCATE ('SQL',
title,1)

FROM books;

SELECT CHARINDEX ('SQL',
title,1)

FROM books;

N O T E

Each database provides a different function for locating a value in a string. In addition, the argument
order varies, and Oracle doesn’t provide a starting position argument.

Displaying the Current Date

Oracle MySQL Microsoft SQL Server

SYSDATE
- -

NOW()
- -

GETDATE()
- -

SELECT SYSDATE
FROM DUAL;

SELECT NOW()
FROM DUAL;

SELECT GETDATE();

N O T E

SQL Server doesn’t use the DUAL table and allows executing a SELECT statement without a FROM
clause.

Specifying a Default Date Format

Oracle MySQL Microsoft SQL Server

26-SEP-09
- -

2009-09-26
- -

09-26-2009
- -

SELECT*
FROM orders
WHERE orderdate ¼

'26-SEP-09';

SELECT*
FROM orders
WHERE orderdate ¼
'2009-09-26';

SELECT*
FROM orders
WHERE orderdate ¼
'09-26-2009';

Appendix F

580

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Replacing NULL Values in Text Data

Oracle MySQL Microsoft SQL Server

NVL2
NVL2 (value, if NULL,

if not NULL)
- -

IFNULL
IFNULL(value, if NULL)

- -

ISNULL
ISNULL(value, if NULL)

- -

SELECT NVL2 (referred,
TO_CHAR(referred),
'Not referred')

FROM customers;

SELECT IFNULL (referred,
'Not referred')

FROM customers;

SELECT ISNULL (referred,
'Not referred')

FROM customers;

Adding Time to Dates

Oracle MySQL Microsoft SQL Server

ADD_MONTHS
ADD_MONTHS(date,

months)
- -

ADDDATE
ADDDATE(date, interval)

- -

DATEADD
DATEADD(interval,

months, date)
- -

SELECT ADD_MONTHS
(SYSDATE, 12)

FROM DUAL;

SELECT ADDDATE (NOW (),
Interval 1 Year)

FROM DUAL;

SELECT DATEADD (YYYY,
1, GETDATE ());

N O T E

The sample statement adds one year to the current date.

Extracting Values from a String

Oracle MySQL Microsoft SQL Server

SUBSTR or SUBSTRING
SUBSTR(value, start,

length)
- -

SUBSTR or SUBSTRING
SUBSTR(value, start,

length)
- -

SUBSTRING
SUBSTRING(value, start,

length)
- -

SELECT SUBSTR(zip,
1, 3)

FROM customers;

SELECT SUBSTR(zip,
1, 3)

FROM customers;

SELECT SUBSTRING(zip,
1, 3)

FROM customers;

SQL in Various Databases

581

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E

SQL Server can use only SUBSTRING, not the abbreviated name SUBSTR.

Concatenating

Oracle MySQL Microsoft SQL Server

||

- -

CONCAT
CONCAT(value, value, ...)
- -

+

- - - - - - - - - - - - - - -– - - - - - - - - - - - - - -

SELECT lastname ||
',' || firstname

FROM customers;

SELECT CONCAT (lastname,
',', firstname)

FROM customers;

SELECT lastname þ
',' þ firstname

FROM customers;

N O T E

Oracle also has a CONCAT function, but it’s limited to two arguments. MySQL in ANSI mode treats the
II symbol as concatenation rather than an OR operation.

Data Structures
In addition to functions, databases have a number of differences in data structures, such
as datatypes and constraints. For example, Oracle has a datatype named NUMBER;
however, MySQL and SQL Server don’t use this name for their numeric datatypes.
Another example is the Oracle datatype DATE, which is equivalent to DATETIME in
MySQL and SQL Server. In terms of constraints, currently MySQL has no CHECK
constraint capabilities, as in the other databases.

N O T E

CHECK constraint capabilities are planned for future versions of MySQL.

Appendix F

582

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY

aggregate functions See group function.

aggregate value A column included in a GROUP

BY clause that exists outside a ROLLUP operation

within the same query.

American National Standards Institute (ANSI) An

industry-accepted committee that sets standards for

SQL; another is the International Organization for

Standardization (ISO).

application cluster environments A high-volume

work environment, in which multiple users request

data from a database simultaneously.

arguments A value listed inside parentheses that

specifies what a function should operate on. See

also function.

authentication The process of validating the

identity of computer users, typically based on a

username and password.

authorization Granting object privileges to users

based on their identities.

bitmap index A two-dimensional array containing

one column for each distinct value being indexed;

useful with columns that have low cardinality. See

also cardinality and index.

bridging entity An entity used to eliminate a many-

to-many relationship by creating two one-to-many

relationships.

B-tree (balanced-tree) index The most common

index used in Oracle; stores data in root node,

branch, and leaf blocks. See also index.

cardinality A term used to describe the level of

distinct values in a column. If a column has many

distinct values, it’s said to have high cardinality.

Cartesian join A type of join that links table data so

that each record in the first table is matched with

each record in the second table; also called a

Cartesian product or cross join.

Cartesian product See Cartesian join.

case conversion functions See Character functions.

character The basic unit of data. It can be a letter,

number, or special symbol.

character functions A function used to alter the

case of characters (called “case conversion

functions”) or to manipulate characters, such as

substituting one character for another (called

“character manipulation functions”).

character manipulation functions See Character

functions.

clause Each section of an SQL statement that begins

with a keyword (SELECT clause, FROM clause,

WHERE clause, and so on). See also keyword.

column alias A name created in a query that’s

substituted for a column name in the query results;

often used to more clearly indicate data displayed in

the results.

column In a physical database, fields are commonly

referred to as columns. See also field.

column qualifier A prefix that indicates the table

containing the column being referenced.

Common field or column A column existing in two

or more tables that contains equivalent data and is

typically used to join tables.

comparison operator A search condition that

indicates how data should relate to the search value

(equal to, greater than, less than, and so forth).

Common comparison operators include >, ,, >¼,

and ,¼.

complex view A view that retrieves data from one or

more tables; contains functions or grouped data.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

composite column Acollectionof columns treatedas

a single unit in grouping operations.

composite or concatenated indexes An index that

includes multiple columns; can improve query

performance. See also index.

composite primary key A combination of columns

that uniquely identifies a record in a database

table. See also primary key.

concatenated grouping An operation created by

listing multiple grouping sets in a grouping

operation.

concatenation Combining the contents of two or

more columns or character strings. Two vertical

bars, or pipes (| |), instruct Oracle 11g to

concatenate the columns in the query output.

condition A portion of an SQL statement that

identifies what must exist or a requirement that

must be met for a record to be included in query

results.

constraints A rule used to ensure the accuracy and

integrity of data. Constraints prevent adding data to

tables that violates these rules. Constraints include

PRIMARY KEY, FOREIGN KEY, UNIQUE, CHECK,

and NOT NULL.

correlated subquery A subquery that references

one or more columns in the outer query, and then

the EXISTS operator tests whether the relation-

ship or link is present before executing the query.

It’s processed once for each row in the outer

query.

cross join See Cartesian join.

data blocks The basic structures in which data in

the Oracle database is stored

data dictionary A collection of objects Oracle 11g

stores to maintain information about database

objects. Stored information includes an object’s

name, type, structure, and owner and the identity

of users who have access to the object.

data manipulation language (DML) Commands

used to modify existing data. Changes to data made

by DML commands aren’t accessible to other users

until the changes have been committed.

data mining Analyzing historical data and other

information stored in an organization’s database to

support business functions, such as developing

marketing campaigns.

database A collection of interrelated files.

database management system (DBMS) A software

product used to create and maintain the structure

of a database and enable users to interact with a

database to enter, manipulate, and retrieve the

data it stores.

database object A defined, self-contained structure

in Oracle 11g. Database objects include tables,

sequences, indexes, and synonyms.

datatype Identifies the type of data Oracle 11g is

expected to store in a column. Common datatypes

include CHAR, NUMBER, and DATE.

default role A role that’s enabled automatically

when a user logs in to a database; usually consists

of privileges a user needs frequently. See also role.

dimension Any category used in analyzing data,

such as time, geography, and product line.

entity Any person, place, or thing with

characteristics or attributes to be included in a

database. In an E-R model, an entity is usually

represented as a square or rectangle.

equality joins A type of join that links table data in

two ormore tables having equivalent data stored in a

common column; also called an equijoin or a simple

join. See also common column and inner join.

equality operator A search condition that

evaluates data for exact, or equal, values. The

equality operator symbol is the equal sign (¼).

equijoins See equality join.

E-R model A diagram that identifies the entities

and data relationships in a database. The model is a

logical representation of the physical database

system to be built.

exclusive lock When DDL operations are

performed, Oracle 11g places this lock on a table so

that no other users can alter the table or place a

lock on it.

584

Glossary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

explain plan Another term for an execution plan,

which identifies the steps Oracle takes to resolve a

query and determine whether an index is used. See

also index,

field A group of related characters that represents

one attribute or characteristic of an entity. For

example, a last name is one attribute of a customer.

file A group of records about the same type of

entity. See also record.

first-normal form (1NF) The first step in the

normalization process, in which repeating values

are removed from database records.

foreign key When a common field exists in two

tables being joined, it’s called a primary key in one

table and a foreign key in the second table. The

foreign key appears on the “many” side of a one-

to-many relationship.

format argument A series of elements represent-

ing exactly what data should look like in query

results; must be enclosed in single quotation

marks.

full table scan A scan in which each row of the

table is read and a particular value is checked to

determine whether it satisfies the condition. This

scan is used if no index has been created on a table.

See also index.

function A predefined block of code that accepts

one or more arguments and returns one value as

output.

function-based index An index created when a

search is based on an expression or a function. See

also index.

group functions A function that processes groups

of rows and returns only one result per group of

rows processed; also called a multiple-row function

or an aggregate function.

heap-organized table An unordered collection of

data.

index A database object that stores a map of

column values and ROWIDs (physical addresses

of table rows) of matching table rows to improve

data retrieval speed. An index can be created

implicitly by Oracle 11g or explicitly by a user.

index organized table (IOT) A variation of a B-

tree index that combines the index and table

into a single structure with rows sorted in

primary key order. See also B-tree (balanced-

tree) index.

inline view A temporary view of underlying

database tables that exists only while a command is

being executed. It’s not a permanent database

object and can’t be referenced again by a

subsequent query.

inner joins A join that displays data only if a

corresponding record in each table is queried.

Equality joins, non-equality joins, and self-joins are

classified as inner joins.

International Organization for Standardization

(ISO) An industry-accepted committee that sets

standards for SQL. Another is the American

National Standards Institute (ANSI).

join conditions An instruction in a query for

combining data from two tables.

Julian date Used in Oracle 11g, a numeric version

of a date that represents the number of days that

have passed between a specified date and January

1, 4712 B.C.

key-preserved table A table containing the

primary key that a view is using to uniquely

identify each record the view displays. See also

view.

keywords A word used in an SQL query that has a

predefined meaning in Oracle 11g. Common

keywords include SELECT, FROM, and WHERE.

logical operators An operator used to combine

search conditions. Logical operators include AND,

OR, and NOT (which reverses the meaning of

search conditions).

lookup table A common description for the table

referenced in an foreign key relationship; typically

used to identify descriptive data for a column value

and ensure consistency of these descriptive values.

See also foreign key.

materialized view A view that allows you to store

data retrieved by the view query and reuse it

without executing the view query again.

585

Glossary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

multiple-column subquery A nested sub-query

that returns more than one column of results to the

outer query; can be listed in the outer query’s

FROM, WHERE, or HAVING clause.

multiple-row functions See group function.

multiple-row subqueries A nested subquery that

returns more than one row of results to the outer

query; used most commonly in WHERE and

HAVING clauses and requires a multiple-row

operator.

nested See nesting.

nesting Using one function as an argument inside

another function; the inner function is resolved

first and passed as input to the outer function.

non-equality join A type of join that links data in

tables that don’t have equivalent rows.

non-key-preserved table A table that doesn’t

uniquely identify the records in a view. See also

view.

normal distribution A statistical concept of value

dispersion, used in calculating standard deviation;

it means that if you input many data values, they

tend to cluster around an average value.

normalization A multistage process that designers

use to develop raw data about an entity into a

structured form that reduces data redundancy.

NULL value A value indicating that no data has

been stored in a particular field; indicates the

absence of data, not a blank space.

object privileges A type of privilege that allows

users to perform DML operations on the data stored

in database objects. Object privileges are assigned

to specific database objects.

optimizer TheOracle feature that provides the logic

a database system uses in determining the best path

of execution, based on available information, and

determines whether using an index is beneficial. See

also explain plan and index.

optional keyword In an SQL query, a keyword that

isn’t required but is included to improve readability

of SQL statements.

outer join A join that links data in tables that

don’t have equivalent rows; in other words,

records existing in one table that don’t have a

matching record in the other table are included in

the results.

outer join operator The plus symbol enclosed in

parentheses (þ), used in an outer join operation.

outer query The main query in an SQL statement;

it incorporates the value passed from the subquery

into its processing to determine the final output.

parent query See outer query.

partial dependency A problem that occurs when

the fields in a record depend on only one portion of

the primary key.

precision the total number of digits to the left and

right of the decimal position, to a maximum of 38

digits

primary key A field that uniquely identifies a

record in a database table.

primary sort The first column included in the

ORDER BY clause.

private synonym An alias used by a user to

reference objects he or she owns. See also

synonym.

privileges Rights that allow users to perform

certain types of actions on the database. Oracle 12c

has system privileges and object privileges.

projection Choosing specific columns in a SELECT

statement.

pseudocolumns Data that isn’t physically stored in

a database but is used to generate values (such as

sequence values).

public synonym An alias used by others to access a

user’s database objects. See also synonym.

query A question posed to the database.

record A collection of fields describing the

attributes of one database element. For example,

name, address, and phone number fields make up a

customer record.

referential integrity When a user refers to

something existing in another table, the

REFERENCES keyword is used to identify the table

and column that must already contain the data

being entered.

586

Glossary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

regular expressions A type of operator that allows

describing complex search patterns in textual data.

role A group, or collection, of privileges. In most

organizations, roles correlate to users’ job duties.

row In a physical database, records are commonly

referred to as rows. See also record.

scale The number of positions to the right of the

decimal in Numeric column.

schema A collection of database objects owned by

one user. By grouping objects according to owner,

multiple objects that have the same object name

can exist in the same database.

secondary sort A sort that specifies a second field

to sort by if an exact match occurs between two or

more rows in the primary sort.

second-normal form (2NF) The second step in the

normalization process, in which partial

dependencies are removed from database records

by breaking a composite primary key into two

parts, each representing a separate table. See also

partial dependency.

selection A process that displays only records

meeting certain conditions. See also condition.

self-join A type of join that links data in a table to

other data in the same table.

sequence A database object that generates a series

of integers, commonly used to create a unique

primary key for a table or for an organization’s

internal controls (such as tracking accounting

records).

set operators An operator used to combine the

results of two (or more) SELECT statements. Valid

set operators in Oracle 12c are UNION, UNION

ALL, INTERSECT, and MINUS.

shared lock A table lock that allows other users to

access portions of a table but not alter the table’s

structure.

simple joins See equality join.

simple view A view that references only one table

and doesn’t include a group function, an expression,

or a GROUP BY clause.

single value The output of a single-row subquery.

See also single-row subquery.

single-row functions A function that returns one

row of results for each record processed.

single-row subquery A nested subquery that

returns only one row of results consisting of only

one column to the outer query. The output of a

single-row subquery is a single value.

standard deviation A calculation used to determine

how close each value in a group of numbers is to the

mean, or average, of the group. See also normal

distribution.

statistical group functions A type of function used

to perform basic statistical calculations, such as

standard deviation and variance, for data analysis.

string literal Alphanumeric data enclosed in single

quotation marks, which instructs Oracle 12c to

interpret the data “literally” and not treat it as a

keyword or command. String literals are displayed

in the output exactly as they’re entered.

Structured Query Language (SQL) The industry

standard for interacting with a relational database.

It’s not considered a programming language; it’s a

data sublanguage with commands focused on

creating database objects and manipulating data

stored in an database.

subquery A complete query nested inside another

query.

substitution variable Instructs Oracle 12c to

prompt the user to enter a value in place of the

substitution variable at the time a command is

executed; used to make SQL statements interactive

and to simplify updating several records.

substring A portion of a string of data.

synonym An alternative name given to a database

object with a complex name. Synonyms can be

private or public.

syntax The basic structure or rules required for an

SQL statement to execute.

system privileges A type of privilege that allows

access to the Oracle 11g database and lets users

perform DDL operations on database objects. An

object privilege combined with the ANY keyword is

also considered a system privilege.

Systems Development Life Cycle (SDLC) A series

of steps for designing and developing a system.

587

Glossary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

table In a physical database, files are often referred

to as tables. See also file.

table aliases A temporary name for a table,

established in the FROM clause. Table aliases

are used to improve processing efficiency or

reduce the number of keystrokes needed when

specifying a table multiple times in an SQL

statement.

third-normal form (3NF) The third step in the

normalization process, in which transitive

dependencies are removed from database records.

See also transitive dependency.

TOP-N analysis A query that merges an inline

view and a ROWNUM pseudocolumn to create a

temporary list of records in a sorted order, and

then the top “N,” or number, of records are

retrieved.

transaction A series of DML statements that should

logically be performed together. In Oracle 12c, a.

transaction is simply a series of statements that

have been issued but not committed. The duration

of a transaction is defined by when a commit

occurs implicitly or explicitly.

transaction control A command that saves

modified data permanently or undoes uncommitted

changes made in error.

transitive dependency A problem occurring when

at least one value in a record isn’t dependent on the

primary key but on another field in the record.

uncorrelated subqueries A subquery that follows

this method of processing: The sub-query is

executed, its results are passed to the outer query,

and then the outer query is executed.

unnormalized Refers to database records that

contain repeating groups of data (multiple entries

for a single column).

views A database object that stores a query

statement. When a view is referenced, the query is

executed, and the results are treated as a table of data.

Views simplify complex queries for nontechnical

users and can be used to restrict users’ access to

sensitive data.

virtual column A column that’s not physically

stored in a database but is derived based on other

columns, such as performing a calculation.

wildcard characters A symbol used to represent

one or more alphanumeric characters in a pattern

search. The wildcard characters in Oracle 11g are

the percent sign (%) and the underscore symbol

(). The percent sign represents any number of

characters; the underscore symbol represents only

one character.

588

Glossary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX

Notes
Page numbers in bold type indicate definitions.
Page numbers followed by (2) indicate two separate

discussions.
Page numbers followed by n indicate notes.
Page numbers followed by t indicate tables.
Page numbers followed by tip indicate tips.

Symbols
! = (not equal to): not equal to operator, 266
$ (dollar sign): formatting character, 261
& (ampersand), substitution variable symbol, 172t
’’ (string literal), 50t
*. See asterisk
= (equal sign): equality operator, 262t
= ANY operator, 461t, 464, 485t
< (less than sign): less than operator, 262t, 461,

461t
< ALL operator, 461t, 462–463, 485t
< ANY operator, 461t, 463–464, 485t
<= (less than or equal to sign): less than or equal to

operator, 264
> (greater than sign): greater than operator, 262t,

461, 461t
> ALL operator, 461–462, 461t, 485t
> ANY operator, 461t, 464, 485t
>= (greater than or equal to sign): greater than or

equal to operator, 265

Numbers
1NF (first-normal form), 8, 10
2NF (second-normal form), 9, 10
3NF (third-normal form), 9, 10

A
ABS function, 364–365
access order (for tables), 566
ACCTMANAGER table, 60, 60n, 64, 143
ADD clause (ALTER TABLE command), 73
ADD_MONTHS function, 367–368

advanced challenges:
constraints, 139
database concepts, 22
database objects, 223–224
DML and TC commands, 177–178
join operations, 345
restricting rows, 293
SELECT statements, 55
single-row functions, 399
sorting data, 293
subqueries, 493
table creation and management, 97–98
user creation and management, 253
views, 538

aggregate values, 431
ALL keyword, 233, 404
ALL operators, 460, 461–463, 461t, 485t
ALL option, 241
ALTER INDEX command, 211
altering indexes, 211–212
altering sequence, 194–196
ALTER ROLE command, 242
ALTER SEQUENCE command, 194
ALTER TABLE … ADD command, 73–74
ALTER TABLE command, 72
ALTER TABLE … DROP COLUMN command,

79–80
ALTER TABLE … DROP UNUSED COLUMNS

command, 80–82
ALTER TABLE … MODIFY command, 74–78
ALTER TABLE … SET UNUSED command, 80–82
ALTER USER command, 236
Amearn column, 62
American National Standards Institute (ANSI), 13
ANALYZE command, 564
AND operator, 274–276
ANSI (American National Standards Institute), 13
ANY keyword, 230
ANY operators, 460, 461–463, 461t, 485t
APPEND option (SQL*Loader), 559
application cluster environments, 186
applications: optimization of, 564
arguments, 348
arithmetic operations:

column alias, 40
NULL values, 42
NULL values in, 407–408
SELECT statements, 39–40

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

arithmetic operations (continued)
syntax for, 50t

AS clause (CREATE TABLE command), 70
AS clause (CREATE VIEW command), 499
AS keyword, 37, 38n, 50t
asterisk (*)
COUNT function argument, 409
include all columns symbol, 31–32
line error indicator, 34n

authentication, 228
authorization, 228
AUTHOR table, 543–544
Author table, 15
AUTOTRACE tool, 566
enabling the use of, 566n
execution plan output, 567
set options, 566t
statistics displayed by, 567–568t
storage of, 566n

averaging column data values, 406–408
AVG function, 402t, 406–408, 440t

B
backup data, 3
best response time goal, 564
best throughput goal, 564
BETWEEN ... AND operator, 267–268
bitmap indexes, 206
creating, 207
organization, 207–208

BOOKAUTHOR table, 15, 544
BOOKS table, 540–541
JustLee Books database, 14–15
listing structure, 30

bridging entity, 10
B-tree (balanced-tree) indexes, 200
creating, 201
data retrieval efficiency, 202–203
descending sort, 205–206
explain plan, 203–204
organization, 201
unique, 205

buffer pool, 200

C
CACHE option (CREATE SEQUENCE command),

186
calculating:
column data value averages, 406–408
column data value totals, 404–406
the standard deviation, 422–423

cardinality, 200
of column data values, 564

Cartesian join, 297

intended, 299
JOIN method, 300–301
traditional method, 298–300
unintentional, 300

Cartesian product, 297
CASCADE option, 112–113
case conversion functions, 349
INITCAP function, 351–352
LOWER function, 349–350
UPPER function, 350–351

CASE expression, 387
case study. See City Jail database
category lookup tables, 12
CBO (cost-based optimizer), 564
CHANGE command (SQL*Plus), 550
character, 2
character data (nonnumeric data):
returning the largest value, 412
returning the smallest value, 412. See also string

literals
character functions, 349
character manipulation functions, 352
CONCAT function, 360–361
INSTR function, 354–356
LENGTH function, 356–357
LPAD function, 357–358
LTRIM function, 358
REPLACE function, 359
RPAD function, 358
RTRIM function, 359
SUBSTR function, 352–354
TRANSLATE function, 360

character strings rules, 258–259
CHAR(n) datatype, 60t
CHECK constraints, 116
adding, 117–119
syntax, 117
testing, 118

City Jail database:
constraints, 139–140
database concepts, 22–23
database objects, 224
DML and TC commands, 178–179
group functions, 447–448
join operations, 345–346
restricting rows, 293–294
single-row functions, 400
sorting data, 293–294
subqueries, 493–494
table creation and management, 98–101
user creation and management, 254
views, 538

clauses (SQL), 31
ADD clause (ALTER TABLE command), 73
AS clause (CREATE TABLE command), 70
AS clause (CREATE VIEW command), 499
ON clause, 233
TO clause, 231, 233
WITH clause, 477–478, 478n

590

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CREATE TABLE, 70
DROP COLUMN clause (ALTER TABLE

command), 79
DROP UNUSED clause (ALTER TABLE

command), 80
GRANT clause, 231, 233
IDENTIFIED BY clause, 236
INCREMENT BY clause (CREATE SEQUENCE

command), 184
MAXVALUE clause (CREATE SEQUENCE

command), 185
MINVALUE clause (CREATE SEQUENCE

command), 185
MODIFY clause (ALTER TABLE command),

74
NEXT clause (CREATE MATERIALIZED VIEW

command), 528
ORDER BY clause, 279
REFRESH clause (CREATE MATERIALIZED

VIEW command), 528
SET UNUSED clause (ALTER TABLE command),

80
START WITH clause (CREATE SEQUENCE

command), 185
for subqueries, 451
subqueries factoring, 477–478
WHEN MATCHED THEN clause (MERGE

command), 481–482
WHEN NOT MATCHED THEN clause (MERGE

command), 481–482, 483
column, 3
Amearn, 62
assigning multiple constraints, 125–126
common, 302
concatenation, 45
data values
averaging, 406–408
grouping multiple-column values, 416
totaling, 404–406

discount, 41
FOREIGN KEY constraints, 113
identity
primary key column, 197–198
resulting from inserts, 199
table creation, 198
test insertion, 198–199

identity in sequences, 197–199
invisible
data dictionary, 69
defining, 68
DESC command, 69

multiple column selection from tables, 34–36
naming rules, 59
one column selection from tables, 33–34
primary sort, 282–283
reversed sequence in SELECT clause, 36
secondary sort, 282–283
Tvalue sorting, 280
virtual, 62, 67–68

column alias, 36
arithmetic expression, 40

concatenation, 47
AS keyword, 38n
ORDER BY clause, 281
SELECT statements, 36–39
SQL*Plus displays, 407n
using, 37
without AS keyword, 38

column level constraints, 106, 107n
column names, 59:
assigning new names in views, 499

column qualifier error, 310
columns (in tables):
arithmetic expression-based: DML operations on

complex views with, 508, 510–512
composite columns, 433–434
renaming in views, 499

comma-delimited file format (SQL*Loader),
559–560

COMMIT command, 164–165
common column, 302
common field, 10
comparison operators, 261
ALL operators, 460, 461–463, 461t, 485t
BETWEEN ... AND operator, 267–268
ANY operators, 460, 461t, 463–465, 485t
equality operator, 260
EXISTS operator, 473, 485t, 576
“greater than or equal to” operator, 265
IS NULL operator, 410tip, 472–473
“less than or equal to” operator, 264
LIKE operator
definition, 270
ESCAPE option, 272–273
review testing data, 273
wildcard characters, 270–272

mathematical, 262t
multiple-row operators, 460–465, 461t, 485t
“not equal to” operator, 266
IN operator, 268–270
other type of, 263t
single-row operators, 453, 459–460

COMPLETE option (REFRESH clause), 528
complex views:
constraints
DML operations on views and views with a
ROWNUM pseudocolumn, 518–519

creating, 508
DML operations on: constraints and, 509, 512
summary guidelines, 519
views created with the DISTINCT keyword,
517

views with columns based on arithmetic
expressions, 508, 510–512

views with multiple tables, 513–515
dropping, 519–520
views with group functions or a GROUP BY

clause, 515–517
composite columns, 433–434
composite indexes, 206
composite primary key, 8

591

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

concatenation, 45
column alias, 47
groupings, 434–435
indexes, 206, 575–576
SELECT statements, 44–48
string literal, 46, 48
two columns, 45

CONCAT function, 360–361
condition, 257
constraints, 104
advanced challenge, 139
assigning multiple columns, 125–126
CHECK, 116
adding, 117–119
syntax, 117
testing, 118

City Jail database, 139–140
creating
column level, 106, 107n
table level, 106–107, 107n
type abbreviations, 105t

disabling
definition, 128
syntax, 128

dropping
definition, 129
NOT NULL constraints, 129
PRIMARY KEY referenced by
FOREIGN KEY, 130

syntax, 129
enabling, 128
syntax, 128

FOREIGN KEY
adding, 111
CASCADE option, 114
columns in same table, 113
definition, 110
ON DELETE CASCADE option,
112–113

dropping by CASCADE option, 130
DROP TABLE error, 114
syntax, 110
testing, 111–112

hands-on assignments, 137–138
NOT NULL, 119
adding, 120–121
dropping by names, 129
syntax, 119
testing, 121

PRIMARY KEY, 60n, 107, 110tip
adding, 108
adding composite, 109–110
dropping by CASCADE option, 130
inserting customer record, 109
syntax, 107
testing, 108

table creation
column level, 124
DEPT, 122
EQUIP, 123–124
E-R model, 122

ETYPES, 123
with no names assigned, 124–125

types, 104t
UNIQUE, 115
adding, 115–116
syntax, 115
testing, 115–116

viewing information, 126–127
constraints (on table data):
and DML operations on complex views, 509, 512

control files (SQL*Loader), 557
correlated subqueries, 450t, 473–475, 485t, 576
cost (of resources), 564
cost-based optimizer (CBO), 564
COUNT function, 402t, 408–410, 440t
asterisk argument, 410

counting records with non-NULL values, 408–410
CREATE MATERIALIZED VIEW command, 498t,

527–528, 532t
CREATE OR REPLACE VIEW command, 498t,

499, 532t
CREATE ROLE command, 238
CREATE SEQUENCE command, 184
generating sequence, 187–188
guidelines, 187
identifying, 184–187
query USER_OBJECTS, 188
syntax, 184
verifying settings, 189

CREATE SYNONYM command, 213
CREATE TABLE ... AS Command:
creating table on subquery, 70–71
DESCRIBE to verifying, 71
SELECT to verifying, 72
syntax for, 70

CREATE TABLE syntax, 63
CREATE USER command, 228
CREATE VIEW command, 498t, 500, 520, 532t
syntax elements, 498–499

creating constraints:
column level, 106, 107n
table level, 106–107, 107n
type abbreviations, 105t

creating database, JustLee Books, 27–30
creating passwords, 228–229
creating sequence, 184–189
creating tables:
ACCTMANAGER table, 64
commands, 58t
CREATE TABLE syntax, 63
defining columns, 63–65
identity columns, 198
viewing list of tables, 65–66
viewing table structures, 66–69

creating users, 228–229
creating views, 498–499, 498t, 532t
complex views, 508
inline views, 468, 520–527

592

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

materialized views, 527–530
simple views, 500–504

CROSS APPLY join method, 520–522
cross join, 297
CROSS keyword, 300
cross-tabular aggregations, 428–431
cube (data cube), 424–425
CUBE extension (GROUP BY clause), 403t,

428–431, 441t
with GROUPING function, 429

CURRENT_DATE function, 373–374
CURRVAL pseudocolumn, 189, 191
CUSTOMERS table, 14, 539–540
Customers table, 14
CYCLE option (CREATE SEQUENCE command),

185

D
data:
access language, 3
analysis functions, 422–424
blocks, 201
dimensions, 425
multi-dimensional analysis, 424–438

importing from external files
with SQL*Loader, 557–560

integrity, 3
mining, 14
security, 3, 227–228
standard deviation function, 422–423
storage, 3
unnormalized, 7
VARIANCE function, 402t, 423–424, 440t

database, 2
advanced challenge, 22
basic terminology, 2–3
buffer pool, 200
City Jail case study, 22–23
designing assumptions, 13–14
hands-on assignments, 21
SQL differences in various products,

579–582
database design:
entity-relationship model. See E-R model
normalization, 6–10
tables in database, 10–12

database management system (DBMS), 2
functionality, 3

database objects, 58
advanced challenges, 223–224
City Jail database, 224
description, 182
dynamic sampling of, 564
warning about, 568

hands-on assignments, 222–223
statistics, 564

data cube, 424–425

data definition language (DDL) commands, 58
data dictionary, 3, 28
V_$SQLAREA view, 562, 562n

data manipulation language (DML) commands, 142
data structures: differences in various database

products, 582. See also constraints;
datatypes; tables

datatype, 61
DATE datatype, 60t
date functions:
ADD_MONTHS function, 367–368
CURRENT_DATE function, 373–374
default date format, 365n
Julian date, 366
LAST_DAY function, 369–371
MONTHS_BETWEEN function, 367
NEXT_DAY function, 368–369
ROUND function, 371–372
SYSDATE function, 373–374
TRUNC function, 372–373

date rules, 260
DBA accounts, 562
DBMS. See database management system
DBMS-STATS built-in package, 564
DECODE function, 385–387, 430–431
DEFAULT ROLE option, 241
DELETE command, 162
removing rows, 162–163
syntax, 162
without WHERE clause, 163

deleting:
materialized views, 529–530
rows, 162–163
tables
commands, 59t
DESCRIBE command to verify, 87
dropping table, 89–90
DROP TABLE command, 86
FLASHBACK TABLE to restoring, 88–89
PURGE option, dropping table, 90
recycle bin checking, 88
removing from recycle bin, 90

views, 498t, 519–520, 532t
delimited file format (SQL*Loader), 559–560
dependency:
partial, 9
transitive, 9

DEPT table creation, 122
DESC command, 69
DESCRIBE command, 50t, 66–67, 67
DESCRIBE command (SQL*Plus), 562
dimensions (of data), 424
multi-dimensional analysis, 424–438

disabling constraints, 128
syntax, 128

discount column, 41
DISTINCT keyword, 42–44, 50t, 404, 409
DML operations on views created with, 517

593

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DML (data manipulation language) commands
(actions):

with MERGE statements, 450t, 479–483, 485t
reversing/undoing, 507n

DML operations on views:
complex views: constraints and, 509, 512
summary guidelines, 519–520
views created with the DISTINCT keyword,
517

views with a ROWNUM pseudocolumn,
518–519

views with columns based on arithmetic
expressions, 508, 510–512

views with group functions or a GROUP BY
clause, 515–517

views with multiple tables, 513–515
simple views, 504–507

DML subqueries, 450t, 478–479
DROP COLUMN clause (ALTER TABLE

command), 79
DROP INDEX command, 212
DROP MATERIALIZED VIEW command, 529–530
dropping constraints, 129
NOT NULL constraints, 129
PRIMARY KEY referenced by FOREIGN KEY, 130
syntax, 129

dropping users, 246
DROP ROLE command, 246
DROP SEQUENCE command, 196
DROP SYNONYM command, 215
DROP TABLE command, 86
DROP TABLE error, 114
DROP UNUSED clause (ALTER TABLE command),

80
DROP USER command, 246
DROP VIEW command, 498t, 519–520, 529–530,

532t
DUAL table, 195–196
dual table, 389
dynamic sampling of database objects, 564
warning about, 568

E
eliminating, duplicate grouping results, 435–436
enabling constraints, 128
syntax, 128

encryption, 237
entering statements:
in SQL Developer, 552
in SQL*Plus: with the editing commands,

549–550
in the text editor, 549

entity, 4
bridging, 10

equality joins, 301
JOIN method, 308–314
JustLee Books table structure, 302

table aliases, 306
traditional method, 303–308

equality operator, 260
equijoins, 301
EQUIP table creation, 123–124
E-R model (entity-relationship model), 4
JustLee Books model, 5–6
notation, 5n
relationships defined, 6

ESCAPE option, 272–273
ETYPES table creation, 123
EXCEPT option, 241
exclusive lock, 169
Execute Statement button (SQL Developer), 553
executing statements:
in SQL Developer, 552–554
in SQL*Plus, 548

execution engine, 563
execution plan, 203
execution times: measuring, 570–571
EXISTS operator, 473, 485t
efficiency, 576

explain plan (execution plan), 203, 563
AUTOTRACE tool output, 567
determination of, 564
modifying queries and assessing, 569
review methods, 565–570

EXPLAIN PLAN FOR command, 568
explicit COMMIT command, 164

F
FAST option (REFRESH clause), 528
field, 3
file, 3
control files (SQL*Loader), 557
importing data from external files with

SQL*Loader, 557–560
log file (SQL*Loader), 557–558
TKPROF executable file, 562

first-normal form (1NF), 8, 10
fixed file format (SQL*Loader), 557–558
FLASHBACK TABLE command, 88–89
FORCE keyword, 499
foreign key, 10
FOREIGN KEY constraints, 110
adding, 111
CASCADE option, 114
columns in same table, 113
ON DELETE CASCADE option, 112–113
dropping by CASCADE option, 130
DROP TABLE error, 114
syntax, 110
testing, 111–112

format arguments, 384–385t
FROM clause (SELECT statement):
multiple-column subqueries in, 467–469
subqueries factoring clause in, 477–478

594

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FULL hint, 577
FULL outer joins, 324, 325
full table scan, 200
function, 348
function-based indexes, 208
creating, 208–209
NULL values, 209

functions (SQL):
differences in various database products,

579–582
nesting, 421–422

G
GRANT clause, 231, 233
GRANT command, 231
granting object privileges, 232–235
granting system privileges, 231–232
greater than operator, 461
GROUP BY clause, 404, 412, 413–416, 418, 440t
DML operations on views with, 515–517
extensions, 403t, 424–438, 425n, 440–441t
unsuitable use of, 415–416

group functions (multiple-row functions), 402, 402,
402–403t, 404, 439–441t

advanced challenge, 447
DML operations on views with, 515–517
GROUP_ID function, 435–436
GROUPING function, 429
hands-on assignments, 446–447
HAVING clause, 404, 417–420, 440t
statistical functions, 422–424. See also GROUP

BY clause
GROUP_ID function, 435–436
grouping data, 413–416
across multiple dimensions, 424–438
cross-tabular aggregations, 428–431
subtotals, 424, 427–438

concatenated groupings, 434–435
DML operations on views with, 515–517
eliminating duplicate results, 435–436
restricting groups, 413–416

GROUPING function: CUBE extension with, 429
GROUPING SETS expression (GROUP BY clause),

403t, 425, 427–428, 440–441t
groups (aggregated output), restricting, 413–416

H
hands-on assignments:
constraints, 137–138
database concepts, 21
database objects, 222–223
DML and TC commands, 176–177
group functions, 446–447
join operations, 344–345
restricting rows, 292

SELECT statements, 54–55
single-row functions, 399
sorting data, 292
subqueries, 492–493
table creation and management, 97
user creation and management, 253
views, 537–538

hash joins, 566
HAVING clause (SELECT statement), 404,

417–420, 440t
single-row subqueries in, 456–457

heap-organized table, 199
highest values:
listing the n highest values, 522–527
returning the largest value, 411–412

I
IDENTIFIED BY clause, 236
identifying:
importing data from external files with

SQL*Loader, 557–560
resource-intensive SQL statements, 561–563

identity columns:
primary key column, 197–198
resulting from inserts, 199
table creation, 198
test insertion, 198–199

implicit COMMIT command, 164
INCREMENT BY clause (CREATE SEQUENCE

command), 184
indexes:
altering, 211–212
balanced-tree, 200–206
bitmap, 206–208
composite, 206
concatenated, 206
concatenated indexes, 575–576
definition, 199
function-based, 208–209
index organized table, 209
inline views (temporary tables), 520
query performance, 200
removing, 211–212
renaming, 211
suppression, 573–575
suppression of, 573–575
verifying, 210–211

index organized table (IOT), 209
INITCAP function, 351–352
inline views (temporary tables), 468, 469, 520
creating, 468, 498t, 520–527, 532t

inner joins, 301
INNER keyword, 320
IN operator, 268–270
efficiency, 576
in multiple-row subqueries, 460, 465

INSERT ALL command, 154n

595

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INSERT command, 143
ACCTMANAGER table, 148
data verification, 145
DEFAULT column option, 149–150
DEFAULT option method, 147
INSERT INTO clause, 143–146
INSERT statement, 148
NULL values method, 146
syntax, 143–144
SYSDATE as data value, 147

INSERT INTO clause, 143–146
INSERT INTO command, 143
ACCTBONUS data rows, 155
with subquery, 155
syntax, 154

INSTR function, 354–356
intended Cartesian join, 299
interactive operator, 172t
International Oracle Users Group (IOUG), 556
International Organization for Standardization

(ISO), 13
International Standard Book Number (ISBN), 7, 8t
INTERSECT set operator, 327, 332
invisible column:
data dictionary, 69
defining, 68
DESC command, 69

IOT (index organized table), 209
IOUG (International Oracle Users Group), 556
ISBN (International Standard Book Number), 7, 8t
IS NOT NULL operator, 277
IS NULL operator, 277
in subqueries, 472–473

ISO (International Organization for
Standardization), 13

iSQL*Plus, 547

J
join conditions, 296
JOIN keyword, 296
JOIN methods (for joins):
Cartesian joins, 300–301
CROSS and OUTER APPLY methods, 520–522
equality joins, 308–314
inline views and, 520–522
non-equality joins, 316–317
outer joins, 324–326
self-joins, 319–320

join methods (for multiple-table queries), 566
JOIN … ON keywords, 312
JOIN … ON method, 312
join operations:
advanced challenges, 345
Cartesian joins, 297–301
City Jail database, 345–346
equality joins, 301–314

hands-on assignments, 344–345
non-equality join, 314–317
outer joins, 321–326
self-joins, 317–320

JOIN … USING keywords, 311
JOIN … USING method, 311
Julian date, 366
JustLee Books database:
BOOKS table, 8–9t, 11
creating, 27–30
designing assumptions, 13–14
listing names of all tables, 66n
tables, 14–16, 539–540, 539–545
table structure, 302
table structures, 10–11

K
key-preserved tables, 514
keys. See foreign keys; primary keys
keywords (SQL), 31
AS, 37, 38n, 50t
ALL, 233
ANY, 230
CROSS, 300
DISTINCT, 42–44, 50t
INNER, 320
JOIN, 296
JOIN … ON, 312
JOIN … USING, 311
NATURAL JOIN, 308–310
REFERENCES, 110
UNIQUE, 42–44, 50t

L
labeling subtotal rows, 429–431
largest value, returning, 411–412
LAST_DAY function, 369–371
LEFT outer joins, 324, 325
LENGTH function, 356–357
less than operator, 461
LIKE operator, 270
ESCAPE option, 272–273
review testing data, 273
wildcard characters, 270–272

listing:
the n highest values, 522–527
returning the largest value,

411–412
of tables, viewing, 65–66

LOCK TABLE command, 168
syntax, 169

lock tables, 168–170
log file (SQL*Loader), 557–558
logical operators:
definition, 274

596

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

AND operator, 274–276
OR operator, 274–276

lookup table, 12
LOWER function, 349–350
LPAD function, 357–358
LTRIM function, 358

M
many-to-many E-R relationship, 5
MATCH_RECOGNIZE clause, 437, 438
materialized views, 497, 527
advantages and disadvantages, 527–528
creating, 498t, 527–530, 532t
deleting, 529–530
querying, 528–529

mathematical comparison operators, 262t
MAX function, 402t, 411–412, 440t
MAXVALUE clause (CREATE SEQUENCE

command), 185
MERGE command, 481–482, 483
merges, sort, 566
MERGE statements, 158n, 481, 485t
DML actions with, 450t, 479–483, 485t

Microsoft Excel pivot tables, 425–426
MIN function, 402t, 412–413, 440t
MINUS set operator, 327, 333
MINVALUE clause (CREATE SEQUENCE

command), 185
MOD function, 363–364
MODIFY clause (ALTER TABLE command), 74
modifying rows:
substitution variable, 159
clearing region column, 159
prompt input, 160
setting region value, 159
SQL*Plus, 158n, 161tip
verifying results, 161

UPDATE command, 156
Amedate column value, 157
multiple columns, 158
reassign regions, 157
syntax, 156

modifying tables, 72–86
ALTER TABLE … ADD command, 73–74
ALTER TABLE command, 72
ALTER TABLE … DROP COLUMN command,

79–80
ALTER TABLE … DROP UNUSED COLUMNS

command, 80–82
ALTER TABLE … MODIFY command, 74–78
ALTER TABLE… SET UNUSED command, 80–82
commands, 58–59t

MONTHS_BETWEEN function, 367
multi-dimensional analysis, 424–438
cross-tabular aggregations, 428–431
subtotals, 424, 427–438

multiple-column subqueries, 450t, 467–470
in a FROM clause, 467–469
in a WHERE clause, 469–470

multiple-column values, grouping, 416
multiple-row comparison operators, 460–465,

461t, 485t
multiple-row functions, 348
multiple-row subqueries, 450t, 459–467
ALL operators in, 460, 461–463, 461t, 485t
ANY operators in, 460, 461t, 463–465, 485t
in a HAVING clause, 465–467
IN operator in, 460, 465

multiple-table queries: join methods, 566
multiple tables: DML operations on complex views

with, 513–515
multiuser access, 3

N
NATURAL JOIN keywords, 308–310
NATURAL JOIN method, 308–310
nested loop joins, 566
nested subqueries, 475–476
nesting functions, 421–422
NEXT clause (CREATE MATERIALIZED VIEW

command), 528
NEXT_DAY function, 368–369
NEXTVAL pseudocolumn, 189
NOCACHE option (CREATE SEQUENCE

command), 186
NOCYCLE option (CREATE SEQUENCE

command), 185
NOFORCE keyword, 499
NOMAXVALUE option (CREATE SEQUENCE

command), 185
NOMINVALUE option (CREATE SEQUENCE

command), 185
NONE option, 241
non-equality join, 314
JOIN method, 316–317
traditional method, 315–316

non-key-preserved tables, 514, 515
DML operations on views with, 514–515

non-NULL values, counting records with, 408–410
NOORDER option (CREATE SEQUENCE

command), 186
normal distribution, 423
normalization, 7
BOOKS table, 11
table structures, 11

NOT NULL constraints, 119
adding, 120–121
and DML operations on complex views, 512
dropping by names, 129
syntax, 119
testing, 121

597

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

NULLIF function, 381–382
NULLS FIRST option (ORDER BY clause), 281
NULLS LAST option (ORDER BY clause), 281
NULL values, 32n, 277
arithmetic operations, 42
in arithmetic operations, 407–408
default sort order, 282
discount column, 41
IS NOT NULL operator, 277–278
IS NULL operator, 277
searching for, 410tip
SELECT statements, 40–42
in subqueries, 471–473

NUMBER(p, s) datatype, 60t
number functions:
ABS function, 364–365
MOD function, 363–364
POWER function, 365
ROUND function, 361–362
TRUNC function, 362–363

number of buffer reads statistic, 562
number of reads per statement transaction

statistic, 562
numeric data:
listing the n highest values, 522–527
returning the largest value, 411–412

NVL function, 377–380
in subqueries, 471–472

NVL2 function, 380–381

O
OAI (Oracle Academic Initiative), 555
object privileges, 230
granting, 232–235

OCP (Oracle Certification Program), 555
ON clause, 233, 308
ON DELETE CASCADE option, 112–113
one-to-many E-R relationship, 5
one-to-one E-R relationship, 5
optimizer, 203, 563
old and new methods, 563–564

optimizer hints, 577
OPTIMIZER_MODE settings, 564
optional keyword, 37
Oracle Academic Initiative (OAI), 555
Oracle Certification Program (OCP), 555
Oracle Enterprise Manager, 562n
Oracle resources, 555–556
Oracle Technology Network (OTN), 555
ORA-00922 error message, 65tip
ORDER BY clause:
column alias, 281
NULLS FIRST option, 281–282
NULLS LAST option, 281–282
primary sort column, 282–283
secondary sort column, 282–283
sorting by SELECT Order, 284–285

sorting results, 279
syntax, 279
Tvalue column sorting, 280

ORDER BY clause (SELECT statement), 522
ORDERENTRY role, 239
ORDERITEMS table, 15, 542–543
ORDER option (CREATE SEQUENCE command),

186
ORDERS table, 15, 541–542
OR operator, 274–276
OTN (Oracle Technology Network), 555
OUTER APPLY join method, 520–522
outer join operator, 321
outer joins, 321
FULL, 326
JOIN method, 324–326
LEFT, 325
nonmatching rows, 321
RIGHT, 326
traditional method, 321–324

outer queries, 451

P
parentheses (()):
subquery delimiters, 451, 476tip
total aggregation argument, 427

parent queries, 451
parser, 563
partial dependency, 9
partial ROLLUPs, 431, 432
passwords:
creating, 228–229
managing, 236–237

pattern matching, 437, 438
percent sign (%), as a wildcard character, 502
performance:
explain plan review methods, 565–570
goals, 564
identifying resource-intensive SQL statements,

561–563
SQL processing architecture, 563–564
SQL processing steps, 565–566
timing queries, 570–571
tuning guidelines, 571–578

performance statistics, 562
from the AUTOTRACE tool, 567–568t
execution times, 570–571

pivot tables (Microsoft Excel), 425–426
PLAN_TABLE table, 566n
PLUSTRACE role, 566n
POWER function, 365
precision, 60, 60t
PRIMARY KEY constraints, 107, 110tip
adding, 108
adding composite, 109–110
dropping by CASCADE option, 130
inserting customer record, 109

598

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

syntax, 107
testing, 108

primary keys, 7
composite, 8

primary sort column, 282, 282–283
private synonym, 214
privileges, 230
object, 230, 232–235
revoking, 244–245
system, 230–232
viewing information, 242–244

projection, 33
PROMOTION table, 15–16, 546
pseudocolumns, 189
PUBLIC keyword, 233
public synonym, 214
PUBLISHER table, 15, 545
PURGE option, dropping table, 90

Q
queries (SELECT statements), 31
executing: in SQL Developer, 553–554
in SQL*Plus, 548

modifying, 569
optimizer, 563–564
outer/parent queries, 451
timing, 570–571

R
record, 3
counting records with non-NULL values,

408–410
recovering tables, 59t
REFERENCES keyword, 110
referential integrity, 110
REFRESH clause (CREATE MATERIALIZED VIEW

command), 528
REGEXP_LIKE function, 375–376
REGEXP_SUBSTR function, 377
regular expressions, 374
REGEXP_LIKE function, 375–376
REGEXP_SUBSTR function, 377

removing indexes, 211–212
removing sequence, 196–197
RENAME … TO command:
syntax of, 83
verifying CUST_MKT table, 84
verifying operations, 84

renaming tables, 83–85, 86tip
REPLACE function, 359
replacing views (re-creating views), 498t, 499,

501n, 504, 532t
resource-intensive SQL statements: identifying,

561–563

resources, Oracle, 555–556
restricting groups, 417–420
returning:
the largest value, 411–412
the smallest value, 412

reversing DML commands, 507n
REVOKE command, 244
RIGHT outer joins, 324, 325
roles, 237
assigning, 238–240
creating, 238–240
default, 241
dropping, 246
enabling after login, 242
PLUSTRACE role, 566n
predefined, 240–241
revoking, 244–245

ROLLBACK command, 164
ROLLUP extension (GROUP BY clause), 403t,

431–436, 441t
ROUND function, 361–362, 371–372
ROWID, 199
ROWNUM pseudocolumn, 517
DML operations on views with, 518–519
inline views and, 520–527

rows, 3
deleting, 162–163
INSERT command, 143
ACCTMANAGER table, 148
data verification, 145
DEFAULT column option, 149–150
DEFAULT option method, 147
INSERT INTO clause, 143–146
INSERT statement, 148
NULL values method, 146
syntax, 143–144
SYSDATE as data value, 147

inserting, 143–155
inserting sequence values, 189
INSERT INTO command, 143
ACCTBONUS data rows, 155
with subquery, 155
syntax, 154

modifying
substitution variable, 159–161
UPDATE command, 156–158

single quotes handling, 152–153
virtual columns
adding, 150
data viewing, 151
error in INSERT statement, 151
NULL value, 152n

row source, 563
row source generator, 563
RPAD function, 358
RTRIM function, 359
rule-based optimizer, 563
rules for dates, 260
Run Script button (SQL Developer), 553–554

599

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

S
SAVEPOINT command, 165–168
scale, 60, 60t
schema, 63
SCOTT schema, 123
SDLC. See Systems Development Life Cycle
searched CASE expression, 387
searching for column data values:
largest value, 411–412
n highest values, 522–527
NULL values, 410tip
smallest value, 412

secondary sort column, 282, 282–283
second-normal form (2NF), 9, 10
SELECT clause:
arithmetic operations, 39
column alias, 36
INITCAP function, 352
LOWER function, 350
reversed column sequence, 36
single-row subqueries in, 457–459

SELECT command/statements:
syntax, 404

SELECT … FOR UPDATE command, 170
syntax, 170

selecting columns, avoiding unnecessary selection,
572–573

selecting rows/records (restricting/filtering), 502
in groups, 417–420

selection, 256
selectivity (of rows), 564, 564. See also cardinality
SELECT statements, 30
advanced challenge, 55
arithmetic operations, 39–40
column alias, 36–39
concatenation, 44–48
DISTINCT option, 42–44
hands-on assignments, 54–55
NULL values, 40–42
subquery, 70
syntax for, 30–36
UNIQUE keyword, 42–44
viewing existing constraints, 126

self-joins, 317
JOIN method, 319–320
traditional method, 318–319

sequence, 183
altering, 194–196
creating, 184–189
identity columns, 197–199
removing, 196–197
setting, 192–193
values. See sequence values

sequence values:
CURRVAL pseudocolumn, 191
inserting rows, 189
ORDERITEMS table, 190–191
ORDERS table, 190–191

pseudocolumns, 189
SET AUTOTRACE ON command, 566
set operators, 326
INTERSECT, 327, 332
MINUS, 327, 333
UNION, 326
UNION ALL, 327

SET ROLE command, 242
SET ROLE DBA command, 242
SET TIMING ON command, 570–571
setting sequence, 192–193
SET UNUSED clause (ALTER TABLE command),

80
shared lock, 168
simple joins, 301
simple views:
creating, 500–504
DML operations on, 504–507

single-row comparison operators, 453, 459–460
single-row functions, 348
advanced challenges, 399
case conversion functions, 349–352
character manipulation functions, 352–361
City Jail database, 400
date functions, 365–374
dual table, 389
hands-on assignments, 399
number functions, 361–365
other functions, 377–389
regular expressions, 374–377

single-row subqueries, 450t, 451–459
HAVING clause, 456–457
operators, 453
SELECT clause, 457–459
WHERE clause, 451–456, 459tip

smallest value, returning, 412
sort merges, 566
SOUNDEX function, 387–388
SQL. See Structured Query Language
SQL commands types, 12–13t
SQL Developer, 547, 551–554
connection and login, 551
entering statements, 552
executing statements, 552–554
interface, 27, 551, 552

SQL*Loader, 557–560
SQL*Net statistics, 567–568t
SQL*Plus, 547, 547–551
CHANGE command, 550
column alias displays, 407n
entering statements: with the editing commands,

549–550
in the text editor, 549

executing queries, 548
interface, 27
login, 547–548

SQL statements:
executing: in SQL Developer, 552–554
in SQL*Plus, 548

600

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

identifying resource-intensive statements,
561–563

measuring execution time, 570–571
SQL TRACE feature, 562
SQL Tuning Advisor, 562, 565
standard deviation, calculating, 422–424
START WITH clause (CREATE MATERIALIZED

VIEW command), 528
START WITH clause (CREATE SEQUENCE

command), 185
statistical group functions, 422–424
statistics: database object statistics, 564. See also

performance statistics
STDDEV function, 402t, 422–423, 440t
string literal, 46, 50t
Structured Query Language (SQL), 12
coding problem areas, 561–563
command types, 12–13t
differences in various database products,

579–582
industry standards, 13
processing architecture, 563–564

subqueries, 70, 450–479
advanced challenge, 493
clauses for, 451
correlated subqueries, 450t, 473–475, 485t, 576
DML subqueries, 450t, 478–479
efficiency: by type, 576
factoring clause, 477–478
hands-on assignments, 492–493
IS NULL operator in, 472–473
multiple-column subqueries, 450t, 467–470
multiple-row subqueries, 450t, 459–467
nested subqueries, 475–476
NULL values in, 471–473
NVL function in, 471–472
rules for, 451
single-row subqueries, 450t, 451–459
types, 450t
uncorrelated subqueries, 450t, 473, 485t, 576

substitution variable, 159
clearing region column, 159
prompt input, 160
setting region value, 159
SQL*Plus, 158n, 161tip
verifying results, 161

SUBSTR function, 352–354
subtotal rows:
identifying, 429
indicator, 427
labeling, 429–431

subtotals, generating, 424, 427–438
SUM function, 402t, 404–406, 439t
synonym, 212
advantages, 212
creating, 213
deleting, 215
private, 214
public, 214
syntax, 213

syntax (SQL), 31
ABS function, 364–365
ADD_MONTHS function, 367–368
ALTER ROLE command, 242
ALTER SEQUENCE command, 194
ALTER TABLE … ADD command, 73
ALTER TABLE … DROP COLUMN command, 79
ALTER TABLE … DROP UNUSED COLUMNS

command, 80
ALTER TABLE … MODIFY command, 74
ALTER TABLE … SET UNUSED command,

80–82
ALTER USER command, 236
arithmetic operations, 50t
AVG function, 402t, 440t
CASE expression, 387
CHECK constraints, 117
FROM clause, 49t
column level constraints, 106
concatenating columns/fields, 50t
CONCAT function, 360–361
COUNT function, 402t, 440t
CREATE MATERIALIZED VIEW command, 498t,

532t
CREATE OR REPLACE VIEW command, 498t,

532t
CREATE ROLE command, 238
CREATE SEQUENCE command, 184
CREATE SYNONYM command, 213
CREATE TABLE, 63
CREATE TABLE ... AS Command, 70
CREATE USER command, 228
CREATE VIEW command, 498–499, 498t, 532t
CUBE extension, 403t
CURRENT_DATE function, 373–374
DECODE function, 385–386
DELETE command, 162
disabling constraints, 128
DISTINCT keyword, 50t
DROP INDEX command, 212
dropping constraints, 129
DROP ROLE command, 246
DROP SEQUENCE command, 196
DROP SYNONYM command, 215
DROP TABLE command, 86
DROP USER command, 246
DROP VIEW command, 498t, 519, 532t
dual table, 389
enabling constraints, 128
FOREIGN KEY constraints, 110
GRANT command, 231
GROUP BY clause, 413, 440t
GROUP BY extensions, 403t, 440–441t
group functions, 402–403t, 439–441t
GROUPING SETS extension, 403t, 440t
HAVING clause, 417, 440t
INITCAP function, 351–352
INSERT command, 143–144
INSERT INTO command, 154
INSTR function, 355
AS keyword, 50t
LAST_DAY function, 369–371

601

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

syntax (SQL) (continued)
LENGTH function, 356
listing tables, 49–50t
listing table structure, 49–50t
LOCK TABLE command, 169
LOWER function, 349
LPAD function, 357
LTRIM function, 358
MAX function, 402t, 411, 440t
MIN function, 402t, 412, 440t
MOD function, 363–364
MONTHS_BETWEEN function, 367
NEXT_DAY function, 368–369
NOT NULL constraints, 119
NULLIF function, 382
NVL function, 378
NVL2 function, 380–381
ORDER BY clause, 279
POWER function, 365
PRIMARY KEY constraints, 107
REATE OR REPLACE VIEW command, 499
RENAME … TO command, 83
REPLACE function, 359
REVOKE command, 244–245
ROLLUP extension, 403t, 441t
ROUND function, 362, 371–372
RPAD function, 358
RTRIM function, 359
SELECT clause, 49t
SELECT … FOR UPDATE command, 170
SELECT statements, 30–36, 49t, 257
SET ROLE command, 242
SOUNDEX function, 388
STDDEV function, 402t, 422, 440t
SUBSTR function, 352
SUM function, 402t, 404, 439t
SYSDATE function, 373–374
table level constraints, 106–107
TO_CHAR function, 383
TO_NUMBER function, 389
TRANSLATE function, 360
TRUNCATE TABLE command, 85, 86tip
TRUNC function, 362–363, 372–373
uncorrelated subqueries, 485t
UNIQUE constraint, 115
UNIQUE keyword, 50t
UPDATE command, 156
UPPER function, 350–351
USER_TABLES, 50t
VARIANCE function, 402t, 423, 440t
WHERE clause (SELECT statement), 469

syntax (SQL*Plus):
CHANGE command, 550
DESCRIBE command, 50t, 66–67

SYSDATE as data value, 147
SYSDATE function, 373–374
system privileges, 230
ANY keyword, 230
granting, 231–232

Systems Development Life Cycle (SDLC), 4

T
table aliases, 306
table level constraints, 106–107, 107n
table locks:
exclusive lock, 169
LOCK TABLE command, 168
syntax, 169

SELECT … FOR UPDATE command, 170
syntax, 170

shared lock, 168
tables, 3
access order, 566
access paths, 565
ACCTMANAGER, 60, 60n, 64
all data selection, 31–33
Author, 15
BookAuthor, 15
Books table, 14–15
constraints during creation
column level, 124
DEPT, 122
EQUIP, 123–124
E-R model, 122
ETYPES, 123
with no names assigned, 124–125

creating
ACCTMANAGER table, 64
commands, 58t
CREATE TABLE syntax, 63
defining columns, 63–65
identity columns, 198
viewing list of tables, 65–66
viewing table structures, 66–69

Customers, 14
in database, 10–12
deleting
commands, 59t
DESCRIBE command to verify, 87
dropping table, 89–90
DROP TABLE command, 86
FLASHBACK TABLE to restoring, 88–89
PURGE option, dropping table, 90
recycle bin checking, 88
removing from recycle bin, 90

designing, 59–63
heap-organized, 199
JustLee Books database, 14–16
in the JustLee Books database, 539–540,

539–545
key-preserved tables, 514, 514
list of existing, 29
lookup, 12
modifying existing, 72–86
ALTER TABLE … ADD command, 73–74
ALTER TABLE command, 72
ALTER TABLE … DROP COLUMN command,

79–80
ALTER TABLE … DROP UNUSED COLUMNS

command, 80–82
ALTER TABLE … MODIFY command, 74–78

602

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ALTER TABLE … SET UNUSED command,
80–82

commands, 58–59t
multiple column selection, 34–36
multiple tables: DML operations on complex

views with, 513–515
naming rules, 59
non-key-preserved tables, 515
DML operations on views with, 514–515

one column selection, 33–34
ORDERITEMS, 15
ORDERS, 15
PLAN_TABLE table, 566n
PROMOTION, 15–16
PUBLISHER, 15
recovering, 59t
renaming, 83–85, 86tip
single-table approach, 7t
truncating, 85–86, 86tip
updating one based upon another, 479–483

table structures:
JustLee Books, 302
viewing, 66–69

testing:
CHECK constraints, 118
FOREIGN KEY constraints, 111–112
NOT NULL constraints, 121
PRIMARY KEY constraints, 108
UNIQUE constraint, 115–116

third-normal form (3NF), 9, 10
timing queries, 570–571
TO_CHAR function, 383, 406, 421n
TO clause, 231, 233
TO_NUMBER function, 388–389
TOP-N analysis, 522–527
total aggregation argument (()), 427
TOTAL column, 437
totaling column data values, 404–406
TRACE feature, 562
traditional join methods:
Cartesian join, 298–300
equality joins, 303–308
non-equality join, 315–316
outer joins, 321–324
self-joins, 318–319

transaction, 163
transaction control (TC) statements:
commands, 142t
COMMIT command, 164–165
definition, 163
ROLLBACK command, 164
SAVEPOINT command, 165–168

transitive dependency, 9
TRANSLATE function, 360
TRUNCATE TABLE command, 85, 86tip
truncating tables, 85–86, 86tip
TRUNC function, 362–363, 372–373
Tuning Advisor, 562, 565
Tvalue column sorting, 280

U
uncorrelated subqueries, 450t, 473, 485t, 576
undoing DML commands, 507n
unintentional Cartesian join, 300
UNION ALL set operator, 327, 328–329
UNION set operation (operator), 326
multiple-column operations, 425, 427, 428

UNIQUE constraint, 115
adding, 115–116
syntax, 115
testing, 115–116

UNIQUE keyword, 42–44, 50t
unnormalized data, 7
UPDATE command, 156
Amedate column value, 157
multiple columns, 158
reassign regions, 157
syntax, 156

updating tables: one based upon another, 479–483
UPPER function, 350–351
UPSERT statements, 481n
USER_CONSTRAINTS, 127
users (user accounts):
advanced challenge, 253
City Jail database, 254
creating, 228–229
dropping, 246
hands-on assignments, 253
passwords, 228–229, 236–237
privileges. See privileges
roles. See roles
UPPER function, 351

USER_TAB_COLUMNS, 67
USER_TABLES, 50t, 65–66
USING clause, 308

V
VARCGHAR2(n) datatype, 60t, 61n
VARIANCE function, 402t, 423–424, 440t
verifying:
CREATE TABLE ... AS Command
DESCRIBE command, 71
SELECT command, 72

DEFAULT and virtual column settings, 67–68
indexes, 210–211
renaming operations in tables, 84

views, 495–538, 496
advanced challenge, 538
constraints information, 126–127
creating, 498t, 532t
complex views, 508
inline views, 468, 496–499
materialized views, 527–530
simple views, 500–504

deleting (dropping), 498t, 519–520, 532t
hands-on assignments, 537–538

603

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

views (continued)
list of tables, 65–66
processing of, 496
referencing, 496, 501
renaming columns in, 499
replacing (re-creating), 498t, 499, 501n, 504,

532t
simple views, creating DML operations on,

504–507
table structures, 66–69
types, 497t
usefulness (purposes), 496, 497

virtual columns, 62
inserting rows
adding, 150
data viewing, 151
error in INSERT statement, 151
NULL value, 152n

V_$SQLAREA view, 562, 562n

W
warning about dynamic sampling of database

objects, 568
WEBHITS, 437
WHEN MATCHED THEN clause (MERGE

command), 481–482, 483

WHEN NOT MATCHED THEN clause (MERGE
command), 481–482

WHERE clause:
character strings rules, 258–259
JOIN method, 311, 313
LOWER function, 349
multiple-column subqueries in, 469–470
restricting groups with, 417, 418, 419–420
rules for dates, 260
simple search performance, 257
single-row subqueries in, 451–456, 459tip
state-based search results, 258
syntax of SELECT statement, 257

wildcard characters, 270–272
WITH ADMIN OPTION (GRANT command), 231
WITH CHECK OPTION (CREATE VIEW

command), 499
WITH clause, 477–478, 478n
WITH GRANT OPTION (GRANT command), 233
WITH READ ONLY (CREATE VIEW command),

499, 502, 504
WPAGE column, 437

Z
zeros, insignificant: as not displayed, 39

604

Index

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	(NA) Joan Casteel-Oracle 12c_ SQL-Cengage Learning (2015).pdf
	Cover������������
	IFC
	Title
	Statement
	Copyright����������������
	Dedication
	Brief Contents���������������������
	Table of Contents������������������������
	Preface
	Read This Before You Begin
	Ch 1: Overview of Database Concepts��
	Ch 1: Introduction�������������������������
	Database Terminology���������������������������
	Database Management System���������������������������������
	Database Design����������������������
	Structured Query Language (SQL)��������������������������������������
	Databases Used in This Textbook��������������������������������������
	Topic Sequence���������������������
	Software Used in This Textbook�������������������������������������
	Ch 1: Chapter Summary����������������������������
	Ch 1: Review Questions�����������������������������
	Ch 1: Multiple Choice����������������������������
	Ch 1: Hands-On Assignments���������������������������������
	Ch 1: Advanced Challenge�������������������������������
	Ch 1: Case Study: City Jail����������������������������������

	Ch 2: Basic SQL SELECT Statements��
	Ch 2: Introduction�������������������������
	Creating the JustLee Books Database��
	SELECT Statement Syntax������������������������������
	Operations in the SELECT Statement���
	Ch 2: Chapter Summary����������������������������
	Chapter 2: Syntax Summary
	Ch 2: Review Questions�����������������������������
	Ch 2: Multiple Choice����������������������������
	Ch 2: Hands-On Assignments���������������������������������
	Ch 2: Advanced Challenge�������������������������������
	Ch 2: Case Study: City Jail����������������������������������

	Ch 3: Table Creation and Management��
	Ch 3: Introduction�������������������������
	Table Design�������������������
	Table Creation���������������������
	Table Creation with Subqueries�������������������������������������
	Modifying Existing Tables��������������������������������
	Deleting a Table�����������������������
	Ch 3: Chapter Summary����������������������������
	Chapter 3: Syntax Summary
	Ch 3: Review Questions�����������������������������
	Ch 3: Multiple Choice����������������������������
	Ch 3: Hands-On Assignments���������������������������������
	Ch 3: Advanced Challenge�������������������������������
	Ch 3: Case Study: City Jail����������������������������������

	Ch 4: Constraints������������������������
	Ch 4: Introduction�������������������������
	Creating Constraints���������������������������
	Using the PRIMARY KEY Constraint���������������������������������������
	Using the FOREIGN KEY Constraint���������������������������������������
	Using the UNIQUE Constraint����������������������������������
	Using the CHECK Constraint���������������������������������
	Using the NOT NULL Constraint������������������������������������
	Including Constraints During Table Creation��
	Adding Multiple Constraints on a Single Column���
	Viewing Constraint Information�������������������������������������
	Disabling and Dropping Constraints���
	Ch 4: Chapter Summary����������������������������
	Chapter 4: Syntax Summary
	Ch 4: Review Questions�����������������������������
	Ch 4: Multiple Choice����������������������������
	Ch 4: Hands-On Assignments���������������������������������
	Ch 4: Advanced Challenge�������������������������������
	Ch 4: Case Study: City Jail����������������������������������

	Ch 5: Data Manipulation and Transaction Control��
	Ch 5: Introduction�������������������������
	Inserting New Rows�������������������������
	Modifying Existing Rows������������������������������
	Deleting Rows��������������������
	Using Transaction Control Statements���
	Using Table Locks������������������������
	Ch 5: Chapter Summary����������������������������
	Chapter 5: Syntax Summary
	Ch 5: Review Questions�����������������������������
	Ch 5: Multiple Choice����������������������������
	Ch 5: Hands-On Assignments���������������������������������
	Ch 5: Advanced Challenge�������������������������������
	Ch 5: Case Study: City Jail����������������������������������

	Ch 6: Additional Database Objects��
	Ch 6: Introduction�������������������������
	Sequences����������������
	Indexes��������������
	Synonyms���������������
	Ch 6: Chapter Summary����������������������������
	Chapter 6: Syntax Summary
	Ch 6: Review Questions�����������������������������
	Ch 6: Multiple Choice����������������������������
	Ch 6: Hands-On Assignments���������������������������������
	Ch 6: Advanced Challenge�������������������������������
	Ch 6: Case Study: City Jail����������������������������������

	Ch 7: User Creation and Management���
	Ch 7: Introduction�������������������������
	Data Security��������������������
	Creating a User����������������������
	Assigning User Privileges��������������������������������
	Managing Passwords�������������������������
	Using Roles������������������
	Viewing Privilege Information������������������������������������
	Removing Privileges and Users������������������������������������
	Ch 7: Chapter Summary����������������������������
	Chapter 7: Syntax Summary
	Ch 7: Review Questions�����������������������������
	Ch 7: Multiple Choice����������������������������
	Ch 7: Hands-On Assignments���������������������������������
	Ch 7: Advanced Challenge�������������������������������
	Ch 7: Case Study: City Jail����������������������������������

	Ch 8: Restricting Rows and Sorting Data��
	Ch 8: Introduction�������������������������
	Where Clause Syntax��������������������������
	Comparison Operators���������������������������
	Logical Operators������������������������
	Treatment of Null Values�������������������������������
	ORDER by Clause Syntax�����������������������������
	Ch 8: Chapter Summary����������������������������
	Chapter 8: Syntax Summary
	Ch 8: Review Questions�����������������������������
	Ch 8: Multiple Choice����������������������������
	Ch 8: Hands-On Assignments���������������������������������
	Ch 8: Advanced Challenge�������������������������������
	Ch 8: Case Study: City Jail����������������������������������

	Ch 9: Joining Data from Multiple Tables��
	Ch 9: Introduction�������������������������
	Cartesian Joins����������������������
	Equality Joins���������������������
	Non-Equality Joins�������������������������
	Self-Joins�����������������
	Outer Joins������������������
	Set Operators��������������������
	Ch 9: Chapter Summary����������������������������
	Chapter 9: Syntax Summary
	Ch 9: Review Questions�����������������������������
	Ch 9: Multiple Choice����������������������������
	Ch 9: Hands-On Assignments���������������������������������
	Ch 9: Advanced Challenge�������������������������������
	Ch 9: Case Study: City Jail����������������������������������

	Ch 10: Selected Single-Row Functions���
	Ch 10: Introduction��������������������������
	Case Conversion Functions��������������������������������
	Character Manipulation Functions���������������������������������������
	Number Functions�����������������������
	Date Functions���������������������
	Regular Expressions��������������������������
	Other Functions����������������������
	The DUAL Table���������������������
	Ch 10: Chapter Summary�����������������������������
	Chapter 10: Syntax Summary
	Ch 10: Review Questions������������������������������
	Ch 10: Multiple Choice�����������������������������
	Ch 10: Hands-On Assignments����������������������������������
	Ch 10: Advanced Challenge��������������������������������
	Ch 10: Case Study: City Jail�����������������������������������

	Ch 11: Group Functions�����������������������������
	Ch 11: Introduction��������������������������
	Group Functions����������������������
	Grouping Data��������������������
	Restricting Aggregated Output������������������������������������
	Nesting Functions������������������������
	Statistical Group Functions����������������������������������
	Enhanced Aggregation for Reporting���
	Ch 11: Chapter Summary�����������������������������
	Chapter 11: Syntax Summary
	Ch 11: Review Questions������������������������������
	Ch 11: Multiple Choice�����������������������������
	Ch 11: Hands-On Assignments����������������������������������
	Ch 11: Advanced Challenge��������������������������������
	Ch 11: Case Study: City Jail�����������������������������������

	Ch 12: Subqueries and MERGE Statements���
	Ch 12: Introduction��������������������������
	Subqueries and Their Uses��������������������������������
	Single-Row Subqueries����������������������������
	Multiple-Row Subqueries������������������������������
	Multiple-Column Subqueries���������������������������������
	NULL Values������������������
	Correlated Subqueries����������������������������
	Nested Subqueries������������������������
	Subquery Factoring Clause��������������������������������
	DML Actions Using Subqueries�����������������������������������
	MERGE Statements�����������������������
	Ch 12: Chapter Summary�����������������������������
	Chapter 12: Syntax Summary
	Ch 12: Review Questions������������������������������
	Ch 12: Multiple Choice�����������������������������
	Ch 12: Hands-On Assignments����������������������������������
	Ch 12: Advanced Challenge��������������������������������
	Ch 12: Case Study: City Jail�����������������������������������

	Ch 13: Views�������������������
	Ch 13: Introduction��������������������������
	Creating a View����������������������
	Creating a Complex View������������������������������
	Dropping a View����������������������
	Creating an Inline View������������������������������
	Creating a Materialized View�����������������������������������
	Ch 13: Chapter Summary�����������������������������
	Chapter 13: Syntax Summary
	Ch 13: Review Questions������������������������������
	Ch 13: Multiple Choice�����������������������������
	Ch 13: Hands-On Assignments����������������������������������
	Ch 13: Advanced Challenge��������������������������������
	Ch 13: Case Study: City Jail�����������������������������������

	Appendix A: Tables for the JustLee Books Database��
	Appendix B: SQL*Plus and SQL Developer Overview��
	Appendix C: Oracle Resources�����������������������������������
	Appendix D: SQL*Loader�����������������������������
	Appendix E: SQL Tuning Topics������������������������������������
	Appendix F: SQL in Various Databases���
	Glossary���������������
	Index������������

